题目内容
已知数列ξ中,满足a1=1且an+1=
,则
(n2an)=( )
an |
1+nan |
lim |
n→∞ |
分析:先取倒数得:
-
=n,n分别取1,2,…n-1,再累加,可求通项,进而可求极限.
1 |
an+1 |
1 |
an |
解答:解:取倒数得:
-
=n
n分别取1,2,…n-1,累加得:
-
=1+2+…+n-1
∵a1=1
∴
=
∴an=
∴
(n2an)=
=2
故选C.
1 |
an+1 |
1 |
an |
n分别取1,2,…n-1,累加得:
1 |
an |
1 |
a1 |
∵a1=1
∴
1 |
an |
n2-n+2 |
2 |
∴an=
2 |
n2-n+2 |
∴
lim |
n→∞ |
lim |
n→∞ |
2n2 |
n2-n+2 |
故选C.
点评:本题以数列递推式为载体,考查数列的极限,关键是取倒数,求通项,进而求极限.
练习册系列答案
相关题目