题目内容
直线x+y+1=0与圆(x-1)2+y2=2的位置关系是
相交
相离
相切
不能确定
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且|AB|=.
(1)求抛物线的方程;
(2)在x轴上是否存在一点C,使△ABC为正三角形?若存在,求出C点的坐标;若不存在,请说明理由.
若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a取值范围是( )
A.[-3,-1] B.[-1,3]
C.[-3,1] D.(-∞,-3]∪[1,+∞)
已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为( )
(A)(x+1)2+y2=2 (B)(x-1)2+y2=2
(C)(x+1)2+y2=4 (D)(x-1)2+y2=4