题目内容

已知是椭圆的左焦点,是椭圆短轴上的一个顶点,椭圆的离心率为,点轴上,三点确定的圆恰好与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存在过作斜率为的直线交椭圆于两点,为线段的中点,设为椭圆中心,射线交椭圆于点,若,若存在求的值,若不存在则说明理由.

 

 

【答案】

20、解:

 

 

 

将(1)代入(2)可得:

(3+4k2)x2+8k2x+(4k2-12)=0      2’

3×64k4+4×36k2=12(4k2+3)2

64k4+48k2=4(16k4+24k2+9)

48k2=96k2+36         2’

-48k2=36

∴k无解

∴不存在

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网