题目内容
(2008•宁波模拟)在数列{an}中,a1=3,a2=3,且数列{an+1+an}是公比为2的等比数列,数列{an+1-an}是公比为-1的等比数列.
(1)求数列{an}的通项公式;
(2)求证:当k为正奇数时,
+
<
(3)求证:当n∈N+时,
+
+
+…+
+
<1.
(1)求数列{an}的通项公式;
(2)求证:当k为正奇数时,
1 |
ak |
1 |
ak+1 |
3 |
2k+1 |
(3)求证:当n∈N+时,
1 |
a1 |
1 |
a2 |
1 |
a3 |
1 |
a2n-1 |
1 |
a2n |
分析:(1)an+1-2an=(a2-2a1)(-1)n-1=3(-1)n,an+1+an=(a2+a1)•2n-1=3•2n,由两式相减能求出数列{an}的通项公式.
(2)当k为正奇数时,
+
=
+
,通分之后能够得到
<
.
(3)把
+
+
+…+
等价转化为(
+
)+(
+
)+…+(
+
),由(2)知
+
+
+…+
<
+
+…+
,由此利用等比数列的求和公式能够证明:当n∈N+时,
+
+
+…+
+
<1.
(2)当k为正奇数时,
1 |
ak |
1 |
ak+1 |
1 |
2k+1 |
1 |
2k+1-1 |
3•2k |
22k+1+2k-1 |
3 |
2k+1 |
(3)把
1 |
a1 |
1 |
a2 |
1 |
a3 |
1 |
a2n-1 |
1 |
a1 |
1 |
a2 |
1 |
a3 |
1 |
a4 |
1 |
a2n-1 |
1 |
a2n |
1 |
a1 |
1 |
a2 |
1 |
a3 |
1 |
a2n-1 |
3 |
2 2 |
3 |
2 4 |
3 |
2 2n |
1 |
a1 |
1 |
a2 |
1 |
a3 |
1 |
a2n-1 |
1 |
a2n |
解答:(1)解:在数列{an}中,a1=3,a2=3,
∵数列{an+1+an}是公比为2的等比数列,
∴an+1+an=(a2+a1)•2n-1=3•2n,①
∵数列{an+1-2an}是公比为-1的等比数列,
∴an+1-2an=(a2-2a1)(-1)n-1=3(-1)n,②
①-②得3an=3•2n+3•(-1)n-1,
∴an=2n+(-1)n-1…(5分)
(2)证明:当k为正奇数时,
+
=
+
=
<
,
∴当k为正奇数时,
+
<
…(8分)
(3)证明:当n∈N*时,
∵
+
<
,
∴
+
+
+…+
=(
+
)+(
+
)+…+(
+
)
<
+
+…+
=3×
=1-
<1.
∵数列{an+1+an}是公比为2的等比数列,
∴an+1+an=(a2+a1)•2n-1=3•2n,①
∵数列{an+1-2an}是公比为-1的等比数列,
∴an+1-2an=(a2-2a1)(-1)n-1=3(-1)n,②
①-②得3an=3•2n+3•(-1)n-1,
∴an=2n+(-1)n-1…(5分)
(2)证明:当k为正奇数时,
1 |
ak |
1 |
ak+1 |
1 |
2k+1 |
1 |
2k+1-1 |
=
3•2k |
22k+1+2k-1 |
3 |
2k+1 |
∴当k为正奇数时,
1 |
ak |
1 |
ak+1 |
3 |
2k+1 |
(3)证明:当n∈N*时,
∵
1 |
ak |
1 |
ak+1 |
3 |
2k+1 |
∴
1 |
a1 |
1 |
a2 |
1 |
a3 |
1 |
a2n-1 |
=(
1 |
a1 |
1 |
a2 |
1 |
a3 |
1 |
a4 |
1 |
a2n-1 |
1 |
a2n |
<
3 |
2 2 |
3 |
2 4 |
3 |
2 2n |
=3×
| ||||
1-
|
=1-
1 |
4n |
点评:本题考查数列的通项公式的求法和数列与不等式的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关题目