题目内容

设数列{an}是以2为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,则=( )
A.1033
B.1034
C.2057
D.2058
【答案】分析:首先根据数列{an}是以2为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,求出等差数列和等比数列的通项公式,然后根据=1++2+23+25+…+29+10进行求和.
解答:解:∵数列{an}是以2为首项,1为公差的等差数列,
∴an=2+(n-1)×1=n+1,
∵{bn}是以1为首项,2为公比的等比数列,
∴bn=1×2n-1
依题意有:=1+2+22+23+25+…+29+10=1033,
故选A.
点评:本题主要考查数列求和的知识点,解答本题的关键是要求出数列{an}和{bn}的通项公式,熟练掌握等比数列求和公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网