题目内容
若x+y=4,x>0,y>0,则lgx+lgy的最大值是 。
lg4
lgx+lgy=lgxy≤lg()2=lg4.
已知{a,b}为一组基底,若实数x,y满足xa+(2-y)b=a+2b,则有
x=0,y=0
x=0,y=4
x=1,y=0
x=1,y=4
解答题:解答应写出文字说明,证明过程或演算步骤.
定义F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A、B之间的曲线段与线段OA、OB所围成图形的面积为S,求S的值;
(Ⅱ)令函数g(x)=F(1,log2(x3+ax2+bx+1))的图象为曲线C2,若存在实数b使得曲线C2在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(Ⅲ)当且x<y时,证明F(x,y)>F(y,x).
如图,在平面直角坐标系xoy中,抛物线y=x 2-x-10与x轴的交点为A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当t∈(0,)时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.