题目内容
求下列函数的反函数:
(1)y=,x∈(1,+∞);
(2)y=log2(x2-2x+3),x∈(-∞,1].
解:(1)由y=>0,得x2-2x+3=log2y,
即(x-1)2=log2y-2.
∵x>1,∴x-1=,x=1+;
又当x>1时,y==+2>4,
故所求反函数为f -1(x)=1+ (x>4).
(2)由y=log2(x2-2x+3),得x2-2x+3=2y,即(x-1)2=2y-2.
∵x≤1,∴x-1=-,x=1-.
又当x≥1时,y=log2(x2-2x+3)=log2[(x-1)2+2]≥1.故所求反函数为f -1(x)=1- (x≥1)
(1)y=-1-x2(-1≤x≤0);
(2)y=2x2-4x+5(x≤-2).