题目内容
由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水),游泳池的水深经常变化,已知泰州某浴场的水深y(米)是时间t(0≤t≤24),(单位小时)的函数,记作y=f(t),下表是某日各时的水深数据经长期观测的曲线y=f(t)可近似地看成函数y=Acosωt+bt(时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 2 5 | 2 0 | 15 | 20 | 249 | 2 | 151 | 199 | 2 5 |
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供游泳爱好者进行运动.
分析:(1)由表中的周期可求ω,再利用两个特殊点可求A=0.5,b=2,,所以可求函数表达式y=
cos
t+2.
(2)水深大于2米时才对游泳爱好者开放,
cos
t+2>2,可得-12kπ-3<t<12kπ+3,由0≤t≤24,,从而可求时间.
1 |
2 |
π |
6 |
(2)水深大于2米时才对游泳爱好者开放,
1 |
2 |
π |
6 |
解答:解:(1)由表中数据,知T=12,ω=
=
由t=0,y=2.5得A+b=2.5
由t=3,y=2,得b=2,所以,A=0.5,b=2振幅A=
,∴y=
cos
t+2….(8分)
(2)由题意知,当y>2时,才可对冲浪者开放,∴
cos
t+2>2,cos
t>0,∴-2kπ-
<
t<2kπ+
,
即有-12kπ-3<t<12kπ+3,由0≤t≤24,故可令k=0,1,2,得0≤t<3或9<t<15或21≤t≤24…1.(4分)
∴在规定时间内有6个小时可供游泳爱好者运动即上午9 00至下午15 00….(15分)
2π |
T |
π |
6 |
由t=3,y=2,得b=2,所以,A=0.5,b=2振幅A=
1 |
2 |
1 |
2 |
π |
6 |
(2)由题意知,当y>2时,才可对冲浪者开放,∴
1 |
2 |
π |
6 |
π |
6 |
π |
2 |
π |
6 |
π |
2 |
即有-12kπ-3<t<12kπ+3,由0≤t≤24,故可令k=0,1,2,得0≤t<3或9<t<15或21≤t≤24…1.(4分)
∴在规定时间内有6个小时可供游泳爱好者运动即上午9 00至下午15 00….(15分)
点评:本题考查三角函数模型的运用,涉及不等式的求解,属于中档题.
练习册系列答案
相关题目
(本题满分15分)由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水), 游泳池的水深经常变化,已知泰州某浴场的水深(米)是时间,(单位小时)的函数,记作,下表是某日各时的水深数据
t(时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 2 5 | 2 0 | 15 | 20 | 249 | 2 | 151 | 199 | 2 5 |
经长期观测的曲线可近似地看成函数
(Ⅰ)根据以上数据,求出函数的最小正周期T,振幅A及函数表达式;
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8 00至晚上20 00之间,有多少时间可供游泳爱好者进行运动
由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水),游泳池的水深经常变化,已知泰州某浴场的水深y(米)是时间t(0≤t≤24),(单位小时)的函数,记作y=f(t),下表是某日各时的水深数据经长期观测的曲线y=f(t)可近似地看成函数y=Acosωt+b
(Ⅰ)根据以上数据,求出函数y=Acosωt+b的最小正周期T,振幅A及函数表达式;
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供游泳爱好者进行运动.
t(时) | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
y(米) | 2 5 | 2 0 | 15 | 20 | 249 | 2 | 151 | 199 | 2 5 |
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供游泳爱好者进行运动.
由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水),游泳池的水深经常变化,已知泰州某浴场的水深y(米)是时间t(0≤t≤24),(单位小时)的函数,记作y=f(t),下表是某日各时的水深数据经长期观测的曲线y=f(t)可近似地看成函数y=Acosωt+b
(Ⅰ)根据以上数据,求出函数y=Acosωt+b的最小正周期T,振幅A及函数表达式;
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供游泳爱好者进行运动.
t(时) | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
y(米) | 2 5 | 2 0 | 15 | 20 | 249 | 2 | 151 | 199 | 2 5 |
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供游泳爱好者进行运动.
由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水),游泳池的水深经常变化,已知泰州某浴场的水深y(米)是时间t(0≤t≤24),(单位小时)的函数,记作y=f(t),下表是某日各时的水深数据经长期观测的曲线y=f(t)可近似地看成函数y=Acosωt+b
(Ⅰ)根据以上数据,求出函数y=Acosωt+b的最小正周期T,振幅A及函数表达式;
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供游泳爱好者进行运动.
t(时) | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
y(米) | 2 5 | 2 0 | 15 | 20 | 249 | 2 | 151 | 199 | 2 5 |
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供游泳爱好者进行运动.