题目内容

精英家教网如图所示,在一个边长为1的正方形AOBC内,曲y=x2和曲线y=
x
围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是(  )
A、
1
2
B、
1
4
C、
1
3
D、
1
6
分析:欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式易求解.
解答:解:可知此题求解的概率类型为关于面积的几何概型,
由图可知基本事件空间所对应的几何度量S(Ω)=1,
满足所投的点落在叶形图内部所对应的几何度量:
S(A)=
1
0
(
x
-x2)dx= (
2
3
x
3
2
-
1
3
x3)
|
1
0

=
1
3

所以P(A)=
S(A)
S
=
1
3
1
=
1
3

故选C.
点评:本题综合考查了对数的性质,几何概型,及定积分在求面积中的应用,是一道综合性比较强的题目,考生容易在建立直角坐标系中出错,可多参考本题的做法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网