题目内容
已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(Ⅰ)分别求数列{an},{bn}的通项公式an,bn;
(Ⅱ)设Tn=
+
+…+
(n∈N*),若Tn+
-
<c(c∈Z)恒成立,求c的最小值.
(Ⅰ)分别求数列{an},{bn}的通项公式an,bn;
(Ⅱ)设Tn=
a1 |
b1 |
a2 |
b2 |
an |
bn |
2n+3 |
2n |
1 |
n |
(Ⅰ)设d、q分别为数列{an}、数列{bn}的公差与公比,a1=1.
由题可知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3后得2,2,+d,4+2d是等比数列{bn}的前三项,
∴(2+d)2=2(4+2d)?d=±2.
∵an+1>an,
∴d>0.
∴d=2,
∴an=2n-1(n∈N*).
由此可得b1=2,b2=4,q=2,
∴bn=2n(n∈N*).
(Ⅱ)Tn=
+
+…+
=
+
+
+…+
,①
∴
Tn=
+
+
+…+
.②
①-②,得
Tn=
+(
+
+…+
)-
.
∴Tn=1+
-
=3-
-
=3-
.
∴Tn+
-
=3-
.
∵(3-
)在N*是单调递增的,
∴(3-
)∈[2,3).
∴Tn+
-
=3-
<3
∴满足条件Tn+
-
<c(c∈Z)恒成立的最小整数值为c=3.
由题可知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3后得2,2,+d,4+2d是等比数列{bn}的前三项,
∴(2+d)2=2(4+2d)?d=±2.
∵an+1>an,
∴d>0.
∴d=2,
∴an=2n-1(n∈N*).
由此可得b1=2,b2=4,q=2,
∴bn=2n(n∈N*).
(Ⅱ)Tn=
a1 |
b1 |
a2 |
b2 |
an |
bn |
1 |
2 |
3 |
22 |
5 |
23 |
2n-1 |
2n |
∴
1 |
2 |
1 |
22 |
3 |
23 |
5 |
24 |
2n-1 |
2n+1 |
①-②,得
1 |
2 |
1 |
2 |
1 |
22 |
1 |
23 |
1 |
2n |
2n-1 |
2n+1 |
∴Tn=1+
1-
| ||
1-
|
2n-1 |
2n |
1 |
2n-2 |
2n-1 |
2n |
2n+3 |
2n |
∴Tn+
2n+3 |
2n |
1 |
n |
1 |
n |
∵(3-
1 |
n |
∴(3-
1 |
n |
∴Tn+
2n+3 |
2n |
1 |
n |
1 |
n |
∴满足条件Tn+
2n+3 |
2n |
1 |
n |
练习册系列答案
相关题目