题目内容

已知,函数.
⑴若不等式对任意恒成立,求实数的最值范围;
⑵若,且函数的定义域和值域均为,求实数的值.

(1);(2).

解析试题分析:(1)根据题意,若不等式对任意恒成立,参编分离后即可得:,从而问题等价于求使对于任意恒成立的的范围,而,当且仅当时,“=”成立,故实数的取值范围是;(2)由题意可得为二次函数,其对称轴为,因此当时,可得其值域应为,从而结合条件的定义域和值域都是可得关于的方程组,即可解得.
试题解析:(1)∵,∴可变形为:,而,当且仅当时,“=”成立,∴要使不等式对任意恒成立,只需,即实数的取值范围是;                
(2)∵,∴其图像对称轴为,根据二次函数的图像,可知上单调递减,∴当时,其值域为,又由的值域是
.
考点:1.恒成立问题的处理方法;2.二次函数的值域.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网