题目内容
15.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,M、N分别是AA1、AC的中点(1)求证:MN∥平面BCD1A1.
(2)求证:MN⊥C1D.
(3)求V${\;}_{D-MN{C}_{1}}$.
分析 (1)以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能证明MN∥平面BCD1A1.
(2)求出$\overrightarrow{MN}$,$\overrightarrow{{C}_{1}D}$,利用向量法能证明MN⊥C1D.
(3)由V${\;}_{D-MN{C}_{1}}$=${V}_{M-{C}_{1}ND}$,利用等体积法能求出三棱锥D-MNC1的体积.
解答 (1)证明:以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,
M(0,0,1),N(1,1,0),B(2,0,0),C(2,2,0),A1(0,0,2),
$\overrightarrow{MN}$=(1,1,-1),$\overrightarrow{BC}$=(0,2,0),$\overrightarrow{B{A}_{1}}$=(-2,0,2),
设平面BCD1A1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=2y=0}\\{\overrightarrow{n}•\overrightarrow{B{A}_{1}}=-2x+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1),
∵$\overrightarrow{MN}•\overrightarrow{n}$=1+0-1=0,MN?平面BCD1A1,
∴MN∥平面BCD1A1.
(2)证明:C1(2,2,2),D(0,2,0),
$\overrightarrow{{C}_{1}D}$=(-2,0,-2),
$\overrightarrow{MN}•\overrightarrow{{C}_{1}D}$=-2+0+2=0,
∴MN⊥C1D.
(3)解:∵$\overrightarrow{{C}_{1}N}$=(-1,-1,-2),∴$\overrightarrow{{C}_{1}N}•\overrightarrow{MN}$=-1-1+2=0,
∴C1N⊥MN,又MN⊥C1D,C1N∩C1D=C1,
∴MN⊥平面C1ND,
∵$\overrightarrow{ND}$=(-1,1,0),∴$\overrightarrow{ND}$•$\overrightarrow{{C}_{1}N}$=1-1+0=0,∴ND⊥C1N,
∴${S}_{△{C}_{1}ND}$=$\frac{1}{2}×{C}_{1}N×ND$=$\frac{1}{2}×\sqrt{6}×\sqrt{2}$=$\sqrt{3}$,
∴V${\;}_{D-MN{C}_{1}}$=${V}_{M-{C}_{1}ND}$=$\frac{1}{3}×MN×{S}_{△{C}_{1}ND}$=$\frac{1}{3}×\sqrt{3}×\sqrt{3}$=1.
点评 本题考查线面平行的证明,考查线线垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
A. | a∈M | B. | a∉M | C. | a⊆M | D. | a>M |
A. | 3 | B. | $2\sqrt{2}$ | C. | 2+$3\sqrt{2}$ | D. | 3+$2\sqrt{2}$ |
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
A. | {x|x<-1或x>1} | B. | {x|-1<x<1} | C. | {x|0<x<1} | D. | {x|x>1} |