题目内容

函数y=f(x)在R上的图象是连续不断的一条曲线,并且在.R上单调递增,已知P(-1,-1),Q(3,1)是其图象上的两点,那
么|f(x+1)|<1的解集为(  )
A.(0,4)B.(-2,2)C.(-∞,0)∪(4,+∞)D.(-∞,-2)∪(2,+∞)
∵|f(x+1)|<1
∴-1<f(x+1)<1
又∵函数y=f(x)在R上单调递增,且P(-1,-1),Q(3,1)是其图象上的两点,
∴-1<x+1<3
则-2<x<2
故|f(x+1)|<1的解集为(-2,2)
故选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网