题目内容
已知数列{an}中,a1=1 |
2 |
(Ⅰ)令bn=an-1-an-3,求证数列{bn}是等比数列;
(Ⅱ)求数列{an}的通项;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列{
Sn+λTn |
n |
分析:(Ⅰ)把点(n、2an+1-an)代入直线方程可得2an+1=an+n代入bn和bn+1中两式相除结果为常数,故可判定{bn}为等比数列.
(Ⅱ)由(Ⅰ)可求得数列{bn}的通项公式,进而可求得数列的前n项和,进而可得{an}的通项公式.
(Ⅲ)把数列an}、{bn}通项公式代入an+2bn,进而得到Sn+2T的表达式代入Tn,进而推断当且仅当λ=2时,数列{
}是等差数列.
(Ⅱ)由(Ⅰ)可求得数列{bn}的通项公式,进而可求得数列的前n项和,进而可得{an}的通项公式.
(Ⅲ)把数列an}、{bn}通项公式代入an+2bn,进而得到Sn+2T的表达式代入Tn,进而推断当且仅当λ=2时,数列{
Sn+λTn |
n |
解答:解:(Ⅰ)由已知得a1=
,2an+1=an+n,
∵a2=
,a2-a1-1=
-
-1=-
,
又bn=an+1-an-1,bn+1=an+2-an+1-1,
∴
=
=
=
=
.
∴{bn}是以-
为首项,以
为公比的等比数列.
(Ⅱ)由(Ⅰ)知,bn=-
×(
)n-1=-
×
,
∴an+1-an-1=-
×
,
∴a2-a1-1=-
×
,a3-a2-1=-
×
,
…
∴an-an-1-1=-
×
,
将以上各式相加得:
∴an-a1-(n-1)=-
(
+
+…+
),
∴an=a1+n-1-
×
=
+(n-1)-
(1-
)=
+n-2.
∴an=
+n-2.
(Ⅲ)存在λ=2,使数列{
}是等差数列.
由(Ⅰ)、(Ⅱ)知,an+2bn=n-2
∴Sn+2T=
-2n
=
=
+
Tn
又Tn=b1+b2+…+bn=
=-
(1-
)=-
+
=
+
(-
+
)
∴当且仅当λ=2时,数列{
}是等差数列.
1 |
2 |
∵a2=
3 |
4 |
3 |
4 |
1 |
2 |
3 |
4 |
又bn=an+1-an-1,bn+1=an+2-an+1-1,
∴
bn+1 |
bn |
an+1-an-1 |
an+2-an+1-1 |
| ||||
an+1-an-1 |
| ||
an+1-an-1 |
1 |
2 |
∴{bn}是以-
3 |
4 |
1 |
2 |
(Ⅱ)由(Ⅰ)知,bn=-
3 |
4 |
1 |
2 |
3 |
2 |
1 |
2n |
∴an+1-an-1=-
3 |
2 |
1 |
2n |
∴a2-a1-1=-
3 |
2 |
1 |
2 |
3 |
2 |
1 |
22 |
…
∴an-an-1-1=-
3 |
2 |
1 |
2n-1 |
将以上各式相加得:
∴an-a1-(n-1)=-
3 |
2 |
1 |
2 |
1 |
22 |
1 |
2n-1 |
∴an=a1+n-1-
3 |
2 |
| ||||
1-
|
1 |
2 |
3 |
2 |
1 |
2n-1 |
3 |
2n |
∴an=
3 |
2n |
(Ⅲ)存在λ=2,使数列{
Sn+λTn |
n |
由(Ⅰ)、(Ⅱ)知,an+2bn=n-2
∴Sn+2T=
n(n+1) |
2 |
Sn+λTn |
n |
| ||
n |
n-3 |
2 |
λ-2 |
n |
又Tn=b1+b2+…+bn=
-
| ||||
1-
|
3 |
2 |
1 |
2n |
3 |
2 |
3 |
2n+1 |
Sn+λTn |
n |
n-3 |
2 |
λ-2 |
n |
3 |
2 |
3 |
2n+1 |
∴当且仅当λ=2时,数列{
Sn+λTn |
n |
点评:本题主要考查了等比关系和等差关系的确定.要利用好an和an-1的关系.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|