题目内容
函数在下列哪个区间内有零点
A. | B. | C. | D. |
A
解析试题分析:因为,所以f(x)在区间[-1,0]内有零点。
考点:零点存在定理。
点评:如果一个连续函数f(x)在闭区间[a,b]上满足f(a)f(b)<0,则f(x)在(a,b)上一定存在零点。
练习册系列答案
相关题目
已知函数是偶函数,当时,恒成立,设,则的大小关系为( )
A. | B. | C. | D. |
函数的单调递减区间是( )
A. | B. | C. | D. |
是定义在[-6,6]上的偶函数,且,则下列各式一定成立的是( )
A. | B. |
C. | D. |
设偶函数的定义域为R,当时是增函数,则的大小关系是( )
A. | B. |
C. | D. |
下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ).
A.y=x3 | B.y=|x|+1 |
C. | D.y=2-|x| |