题目内容

S=1+
1
2
+
1
3
+…+
1
1000000
,则S的整数部分是(  )
分析:利用放缩法进行放缩,S=1+
1
2
+
1
3
+
1
4
+…+
1
1000000
=1+
2
2
+
2
+
2
3
+
3
+…+
2
1000000
+
1000000
<1+2×(
1
2
+1
+
1
3
+
2
+…+
2
1000000
+
999999
)=1999;
S>1+
1
2
+
1
3
+
1
4
+…+
1
1000000
=
2
1
+
1
+
2
2
+
2
+
2
3
+
3
+…+
2
1000000
+
1000000
2
2
+
1
+
2
3
+
2
+
2
4
+
3
+…+
2
1000000
+
999999
=1998.即1998<S<1999.从而得出S的整数部分.
解答:解:S=1+
1
2
+
1
3
+
1
4
+…+
1
1000000

=1+
2
2
+
2
+
2
3
+
3
+…+
2
1000000
+
1000000

<1+2×(
1
2
+1
+
1
3
+
2
+…+
2
1000000
+
999999

=1+2×[
2
-1)+(
3
-
2
)+…+(
1000000
-
999999
]
=1+2×(-1+
1000000

=1+2×(1000-1)
=1999.
即S<1999,
又∵S>1+
1
2
+
1
3
+
1
4
+…+
1
1000000

=
2
1
+
1
+
2
2
+
2
+
2
3
+
3
+…+
2
1000000
+
1000000

2
2
+
1
+
2
3
+
2
+
2
4
+
3
+…+
2
1000000
+
999999

=2×[(
2
-1)+(
3
-
2
)+(
4
-
3
)+…+(
1000000
-
999999
)]
=2×(-1+
1000000

=2×(1000-1)
=1998.
即s>1998.
所以1998<S<1999.
所以S的整数部分1998.
故选B.
点评:本题考查放缩法、有理数域的解法,解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用放缩法进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网