题目内容
设点O在△ABC内部,且有
+2
+3
=
,则△AOB,△AOC,△BOC的面积比为( )
| OA |
| OB |
| OC |
| 0 |
| A、1:2:3 |
| B、3:2:1 |
| C、2:3:4 |
| D、4:3:2 |
分析:如图所示,延长OB到点E,使得
=2
,分别以
,
为邻边作平行四边形OAFE.则
+2
=
+
=
,由于
+2
+3
=
,可得-
=3
.又
=2
,可得
=2
.于是
=
,得到S△ABC=2S△AOB.同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.即可得出.
| OE |
| OB |
| OA |
| OE |
| OA |
| OB |
| OA |
| OE |
| OF |
| OA |
| OB |
| OC |
| 0 |
| OF |
| OC |
| AF |
| OB |
| DF |
| OD |
| CO |
| OD |
解答:解:如图所示,
延长OB到点E,使得
=2
,
分别以
,
为邻边作平行四边形OAFE.
则
+2
=
+
=
,
∵
+2
+3
=
,
∴
=3
.
又
=2
,
∴
=2
.
∴
=
,
∴S△ABC=2S△AOB.
同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.
∴△AOB,△AOC,△BOC的面积比=3:2:1.
故选:B.
延长OB到点E,使得
| OE |
| OB |
分别以
| OA |
| OE |
则
| OA |
| OB |
| OA |
| OE |
| OF |
∵
| OA |
| OB |
| OC |
| 0 |
∴
| OF |
| OC |
又
| AF |
| OB |
∴
| DF |
| OD |
∴
| CO |
| OD |
∴S△ABC=2S△AOB.
同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.
∴△AOB,△AOC,△BOC的面积比=3:2:1.
故选:B.
点评:本题考查了向量的平行四边形法则、向量共线定理、三角形的面积计算公式,属于难题.
练习册系列答案
相关题目
设点O在△ABC内部,且
+
+
=
,则△ABC的面积与△OBC的面积之比是( )
. |
| OA |
. |
| OB |
. |
| OC |
. |
| 0 |
| A、2:1 | B、3:1 |
| C、4:3 | D、3:2 |