题目内容

某工厂计划出售一种产品,经销人员并不是根据生产成本来确定这种产品的价格,而是通过对经营产品的零售商对于不同的价格情况下他们会进多少货进行调查,通过调查确定了关系式P=-750x+15000,其中P为零售商进货的数量(单位:件),x为零售商支付的每件产品价格(单位:元).现估计生产这种产品每件的材料和劳动生产费用为4元,并且工厂生产这种产品的总固定成本为7000元(固定成本是除材料和劳动费用以外的其他费用),为获得最大利润,工厂应对零售商每件收取多少元?并求此时的最大利润.
分析:根据生产这种产品每件的材料和劳动生产费用为4元,并且工厂生产这种产品的总固定成本为7000元,可建立函数关系式,利用配方法可求函数的最值.
解答:解:设工厂获得的利润为y元.则根据利润等于销售额减去材料和劳动生产费,减去总固定成本可知
y=x•P-4P-7000=(x-4)(-750x+15000)-7000=-750(x2-24x+80)-7000=-750[(x-12)2-64]-7000
当x=12时,y最大.
此时y=41000
∴工厂对零售商每件收取12元,此时最大利润为41万元.
点评:本题以实际问题为载体,考查函数模型的构建,考查二次函数最值的求解,解题的关键是挖掘本质,抽象出函数模型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网