题目内容

1.已知数列{an}前几项和Sn,Sn-Sn-2=3(-$\frac{1}{2}$)n-1(n≥3),且S1=1,S2=-$\frac{3}{2}$,求数列{an}的通项公式.

分析 由已知递推式得${S}_{2n}={S}_{2}-3[(\frac{1}{2})^{2n-1}+(\frac{1}{2})^{2n-3}+…+(\frac{1}{2})^{3}]$=$-2+(\frac{1}{2})^{2n-1}$,${S}_{2n+1}={S}_{1}+3[(\frac{1}{2})^{2n}+(\frac{1}{2})^{2n-2}+…+(\frac{1}{2})^{2}]$=$2-(\frac{1}{2})^{2n}$(n≥1),然后作差分别求出a2n+1和a2n后得答案.

解答 解:当数列含有偶数项时,有:
${S}_{2n}-{S}_{2n-2}=-3•(\frac{1}{2})^{2n-1}$,
${S}_{2n-2}-{S}_{2n-4}=-3•(\frac{1}{2})^{2n-3}$,

${S}_{4}-{S}_{2}=-3•(\frac{1}{2})^{3}$,
累加得${S}_{2n}={S}_{2}-3[(\frac{1}{2})^{2n-1}+(\frac{1}{2})^{2n-3}+…+(\frac{1}{2})^{3}]$=$-2+(\frac{1}{2})^{2n-1}$,
当数列含有奇数项时,有:
${S}_{2n+1}-{S}_{2n-1}=3•(\frac{1}{2})^{2n}$,
${S}_{2n-1}-{S}_{2n-3}=3•(\frac{1}{2})^{2n-2}$,

${S}_{3}-{S}_{1}=3•(\frac{1}{2})^{2}$.
累加得${S}_{2n+1}={S}_{1}+3[(\frac{1}{2})^{2n}+(\frac{1}{2})^{2n-2}+…+(\frac{1}{2})^{2}]$=$2-(\frac{1}{2})^{2n}$(n≥1),
∴${a}_{2n+1}={S}_{2n+1}-{S}_{2n}=4-3•(\frac{1}{2})^{2n}(n≥1)$,
${a}_{2n}={S}_{2n}-{S}_{2n-1}=-4+3•(\frac{1}{2})^{2n-1}(n≥1)$.
又a1=S1=1,
综上,${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{4-3•(\frac{1}{2})^{n+1},n是奇数}\\{-4+3•(\frac{1}{2})^{n-1},n是偶数}\end{array}\right.$.

点评 本题考查数列的性质,解题时要注意计算能力的培养,着重考查了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网