题目内容
【题目】选修4—1:几何证明选讲
如图,圆周角∠BAC的平分线与圆交于点D,过点D的切线与弦AC的延长线交于点 E,AD交BC于点F.
(1)求证:BC∥DE;
(2)若D、E、C、F四点共圆,且,求∠BAC.
【答案】(1)详见解析(2)
【解析】
试题分析:(1)证明直线平行,一般利用角的关系进行证明:由角平分线得∠DAC=∠DAB,再根据四点共圆得∠EDC=∠DAC,∠DAB=∠DCB,最后根据等量关系得证(2)由四点共圆得
∠CFA=∠CED,再由等弧对等角得∠CBA=∠BAC,因此在三角形ACF中,三个内角用∠DAC表示,解得∠BAC=2∠DAC
试题解析:(1)证明:因为∠EDC=∠DAC,∠DAC=∠DAB,∠DAB=∠DCB,
所以∠EDC=∠DCB,所以BC∥DE.…
(2)解:因为D,E,C,F四点共圆,所以∠CFA=∠CED
由(1)知∠ACF=∠CED,所以∠CFA=∠ACF.
设∠DAC=∠DAB=x,因为,所以∠CBA=∠BAC=2x,
所以∠CFA=∠FBA+∠FAB=3x,
在等腰△ACF中,π=∠CFA+∠ACF+∠CAF=7x,则,所以∠BAC
练习册系列答案
相关题目