题目内容

1.如图(1),矩形ABCD中,AB=2AD,E为DC的中点,现将△ADE沿AE折起,使平面ADE⊥平面ABCE.且在射线CE上取一点M,使EM=AB,如图(2),求证:DE⊥平面ADM.

分析 取AE的中点F,连接DF,BF,设AD=1,求出BD,由勾股定理可证DE⊥BE,由EM=AB且,EM∥AB,可证DE⊥MA,又由已知可得DE⊥AD,MA∩AD=A,即可证明DE⊥平面MDA.

解答 证明:如图(2),取AE的中点F,连接DF,BF,设AD=1,
∵AD=DE=1,∴DF⊥AE,由AD⊥DE,可得AE=$\sqrt{2}$,AF=$\frac{\sqrt{2}}{2}$,DF=$\sqrt{D{A}^{2}-A{F}^{2}}$=$\frac{\sqrt{2}}{2}$,
∵平面ADE⊥平面ABCE.
∴DF⊥BF,
∵AB=2,AE=$\sqrt{2}$,BE=$\sqrt{B{C}^{2}+E{C}^{2}}$=$\sqrt{2}$,
∴由勾股定理可得:∠BEF=90°,
∴BF=$\sqrt{B{E}^{2}+E{F}^{2}}$=$\sqrt{\frac{5}{2}}$,
∴DB=$\sqrt{D{F}^{2}+B{F}^{2}}$=$\sqrt{3}$,
∵DE=1,BE=$\sqrt{2}$.
∴由勾股定理可得:∠BED=90°,即DE⊥BE,
∵EM=AB且,EM∥AB,∴MA∥BE,
∴DE⊥MA,
又由已知可得DE⊥AD,MA∩AD=A,
∴DE⊥平面MDA.

点评 本题主要考查了直线与平面垂直,折叠问题,考查空间想象能力,计算能力和转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网