ÌâÄ¿ÄÚÈÝ
A×飺ÒÑ֪˫ÇúÏß
-
=1(a£¾0£¬b£¾0)µÄÀëÐÄÂÊe=
£¬Ò»Ìõ½¥½üÏß·½³ÌΪy=
x£®
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì
£¨2£©¹ýµã£¨0£¬
£©Çãб½ÇΪ45¡ãµÄÖ±ÏßlÓëË«ÇúÏßcºãÓÐÁ½¸ö²»Í¬µÄ½»µãAºÍB£¬Çó|AB|£®
B×飺ÒÑ֪˫ÇúÏß
-
=1(a£¾0£¬b£¾0)µÄÀëÐÄÂÊe=
£¬Ò»Ìõ½¥½üÏß·½³ÌΪy=
x£®
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì
£¨2£©¹ýµã£¨0£¬
£©ÊÇ·ñ´æÔÚÒ»ÌõÖ±ÏßlÓëË«ÇúÏßcÓÐÁ½¸ö²»Í¬½»µãAºÍBÇÒ
•
=2£¬Èô´æÔÚÇó³öÖ±Ïß·½³Ì£¬Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£®
x2 |
a2 |
y2 |
b2 |
2
| ||
3 |
| ||
3 |
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì
£¨2£©¹ýµã£¨0£¬
2 |
B×飺ÒÑ֪˫ÇúÏß
x2 |
a2 |
y2 |
b2 |
2
| ||
3 |
| ||
3 |
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì
£¨2£©¹ýµã£¨0£¬
2 |
OA |
OB |
·ÖÎö£ºA£¨1£©ÓÉÌâÉèÖª
£¬ÓÉ´ËÄÜÇó³öË«ÇúÏßCµÄ·½³Ì£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=x+
£¬ÁªÁ¢
£¬µÃ4x2+6
x-3=0£¬ÔÙÓÉÏÒ³¤¹«Ê½ÄÜÇó³ö|AB|£®
B£¨1£©ÓÉÌâÉèÖª
£¬ÓÉ´ËÄÜÇó³öË«ÇúÏßCµÄ·½³Ì£®
£¨2£©¼ÙÉèÖ±Ïßl´æÔÚ£®ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+
£¬ÁªÁ¢
£¬µÃ£¨3k2+1£©x2+6
kx-3=0£¬ÓÉ
•
=2£¬µÃk2=-
£®²»³ÉÁ¢£®¹Ê²»´æÔÚÒ»ÌõÖ±ÏßlÓëË«ÇúÏßcÓÐÁ½¸ö²»Í¬½»µãAºÍBÇÒ
•
=2£®
|
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=x+
2 |
|
2 |
B£¨1£©ÓÉÌâÉèÖª
|
£¨2£©¼ÙÉèÖ±Ïßl´æÔÚ£®ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+
2 |
|
2 |
OA |
OB |
1 |
5 |
OA |
OB |
½â´ð£º½â£ºA£¨1£©¡ßË«ÇúÏß
-
=1(a£¾0£¬b£¾0)µÄÀëÐÄÂÊe=
£¬
Ò»Ìõ½¥½üÏß·½³ÌΪy=
x£¬
¡à
£¬½âµÃa2=9£¬b2=3£¬
¡àË«ÇúÏßCµÄ·½³ÌΪ
+
=1£®
£¨2£©¹ýµã£¨0£¬
£©Çãб½ÇΪ45¡ãµÄÖ±ÏßlµÄ·½³ÌΪy=x+
£¬
ÁªÁ¢
£¬µÃ4x2+6
x-3=0£¬
¡÷=£¨6
£©2+4¡Á4¡Á3=120£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=-
£¬x1x2=-
£¬k=tan45¡ã=1£¬
¡à|AB|=
=
£®
BA£¨1£©¡ßË«ÇúÏß
-
=1(a£¾0£¬b£¾0)µÄÀëÐÄÂÊe=
£¬
Ò»Ìõ½¥½üÏß·½³ÌΪy=
x£¬
¡à
£¬½âµÃa2=9£¬b2=3£¬
¡àË«ÇúÏßCµÄ·½³ÌΪ
+
=1£®
£¨2£©¼ÙÉèÖ±Ïßl´æÔÚ£®ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+
£¬
ÁªÁ¢
£¬µÃ£¨3k2+1£©x2+6
kx-3=0£¬
¡ßÖ±ÏßlÓëË«ÇúÏßcÓÐÁ½¸ö²»Í¬½»µãAºÍB£¬
¡à¡÷=£¨6
k£©2+4¡Á£¨3k2+1£©¡Á3£¾0£¬k¡ÊR£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=-
£¬x1x2=-
£¬
y1y2=£¨kx1+
£©£¨kx2+
£©=k2x1x2+
k£¨x1+x2£©+2
=-
-
+2
=
£®
¡ß
•
=2£¬
¡àx1x2+y1y2=-
+
=
=2£¬
ÕûÀí£¬µÃk2=-
£®²»³ÉÁ¢£®
¹Ê²»´æÔÚÒ»ÌõÖ±ÏßlÓëË«ÇúÏßcÓÐÁ½¸ö²»Í¬½»µãAºÍBÇÒ
•
=2£®
x2 |
a2 |
y2 |
b2 |
2
| ||
3 |
Ò»Ìõ½¥½üÏß·½³ÌΪy=
| ||
3 |
¡à
|
¡àË«ÇúÏßCµÄ·½³ÌΪ
x2 |
9 |
y2 |
3 |
£¨2£©¹ýµã£¨0£¬
2 |
2 |
ÁªÁ¢
|
2 |
¡÷=£¨6
2 |
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=-
3
| ||
2 |
3 |
4 |
¡à|AB|=
2[(-
|
15 |
BA£¨1£©¡ßË«ÇúÏß
x2 |
a2 |
y2 |
b2 |
2
| ||
3 |
Ò»Ìõ½¥½üÏß·½³ÌΪy=
| ||
3 |
¡à
|
¡àË«ÇúÏßCµÄ·½³ÌΪ
x2 |
9 |
y2 |
3 |
£¨2£©¼ÙÉèÖ±Ïßl´æÔÚ£®ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+
2 |
ÁªÁ¢
|
2 |
¡ßÖ±ÏßlÓëË«ÇúÏßcÓÐÁ½¸ö²»Í¬½»µãAºÍB£¬
¡à¡÷=£¨6
2 |
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=-
6
| ||
3k2+1 |
3 |
3k2+1 |
y1y2=£¨kx1+
2 |
2 |
2 |
=-
3k2 |
3k2+1 |
12k2 |
3k2+1 |
=
2-9k2 |
3k2+1 |
¡ß
OA |
OB |
¡àx1x2+y1y2=-
3 |
3k2+1 |
2-9k2 |
3k2+1 |
-1-9k2 |
3k2+1 |
ÕûÀí£¬µÃk2=-
1 |
5 |
¹Ê²»´æÔÚÒ»ÌõÖ±ÏßlÓëË«ÇúÏßcÓÐÁ½¸ö²»Í¬½»µãAºÍBÇÒ
OA |
OB |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨣¬¿¼²éÖ±ÏßÊÇ·ñ´æÔÚµÄÅжϣ®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÔÚÒ»¶¨µÄ̽Ë÷ÐÔ£¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâµÈ¼Ûת»¯Ë¼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿