ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©¶¨ÒåÔÚÇø¼ä(-1£¬1)ÉÏ£¬f(
)=-1£¬¶ÔÈÎÒâx£¬y¡Ê£¨-1£¬1£©£¬ºãÓÐf(x)+f(y)=f(
)³ÉÁ¢£¬ÓÖÊýÁÐ{an}Âú×ãa1=
£¬an+1=
£®
£¨I£©ÔÚ£¨-1£¬1£©ÄÚÇóÒ»¸öʵÊýt£¬Ê¹µÃf(t)=2f(
)£»
£¨II£©ÇóÖ¤£ºÊýÁÐ{f£¨an£©}ÊǵȱÈÊýÁУ¬²¢Çóf£¨an£©µÄ±í´ïʽ£»
£¨III£©Éècn=
bn+2£¬bn=
+
+
+¡+
£¬ÊÇ·ñ´æÔÚm¡ÊN*£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬cn£¼
lo
m-
log2mºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ömµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
1 |
2 |
x+y |
1+xy |
1 |
2 |
2a | ||
1+
|
£¨I£©ÔÚ£¨-1£¬1£©ÄÚÇóÒ»¸öʵÊýt£¬Ê¹µÃf(t)=2f(
1 |
2 |
£¨II£©ÇóÖ¤£ºÊýÁÐ{f£¨an£©}ÊǵȱÈÊýÁУ¬²¢Çóf£¨an£©µÄ±í´ïʽ£»
£¨III£©Éècn=
n |
2 |
1 |
f(a1) |
1 |
f(a2) |
1 |
f(a3) |
1 |
f(an) |
6 |
7 |
g | 2 2 |
18 |
7 |
·ÖÎö£º£¨I£©ÓÉf(t)=2f(
)=f(
)+f(
)=f(
)=f(
)£¬ÄÜÇó³öʵÊýt£®
£¨II£©ÓÉf(a1)=f(
)=-1£¬ÇÒf(x)+f(y)=f(
)£¬Öª
=2£¬ÓÉ´ËÄܹ»Ö¤Ã÷ÊýÁÐ{f£¨an£©}ÊǵȱÈÊýÁУ¬²¢ÄÜÇó³öf£¨an£©µÄ±í´ïʽ£®
£¨III£©ÓÉbn=-(1+
+
+¡+
)=-
=-2+
£¬Öªcn=
bn+2=-n+
+2£¬Ôòcn+1-cn=-(n+1)+
+2-[-n+
+2]£¼0£¬¹Ê{cn}ÊǼõÊýÁУ¬ÓÉ´ËÄܹ»ÍƵ¼³ö´æÔÚm¡ÊN*£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬cn£¼
lo
m-
log2mºã³ÉÁ¢£®
1 |
2 |
1 |
2 |
1 |
2 |
| ||||
1+
|
4 |
5 |
£¨II£©ÓÉf(a1)=f(
1 |
2 |
x+y |
1+xy |
f(an+1) |
f(an) |
£¨III£©ÓÉbn=-(1+
1 |
2 |
1 |
22 |
1 |
2n-1 |
1-
| ||
1-
|
1 |
2n-1 |
n |
2 |
n |
2n |
n+1 |
2n+1 |
n |
2n |
6 |
7 |
g | 2 2 |
18 |
7 |
½â´ð£º½â£º£¨I£©f(t)=2f(
)=f(
)+f(
)=f(
)=f(
)£¬
¡àt=
¡£¨2·Ö£©
£¨II£©¡ßf(a1)=f(
)=-1£¬
ÇÒf(x)+f(y)=f(
)£¬
¡àf(an+1)=f(
)=f(an)+f(an)=2f(an)£¬
¼´
=2
¡à{f£¨an£©}ÊÇÒÔ-1ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡àf(an)=-2n-1£®¡£¨6·Ö£©
£¨III£©ÓÉ£¨II£©µÃ£¬bn=-(1+
+
+¡+
)=-
=-2+
¡£¨8·Ö£©
¡àcn=
bn+2=-n+
+2£¬¡£¨9·Ö£©
Ôòcn+1-cn=-(n+1)+
+2-[-n+
+2]
=
-
-1
=
-1£¼0£¬
¡à{cn}ÊǼõÊýÁУ¬
¡àcn¡Üc1=-1+
+2=
£¬
Ҫʹ7cn£¼6log2 2m-18log2m¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
Ö»Ðè6log22m-18log2m£¾
£¬
¼´4log 22m-12log2m-7£¾0£¬
¹Êlog2m£¼-
£¬»òlog2m£¾
£¬
¡à0£¼m£¼
£¬»òm£¾8
¡Ö11.31£¬
¡àµ±m¡Ý12£¬ÇÒm¡ÊN*ʱ£¬7cn£¼6log2 2m-18log2m¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
¡àmµÄ×îСÕýÕûÊýֵΪ12£®
1 |
2 |
1 |
2 |
1 |
2 |
| ||||
1+
|
4 |
5 |
¡àt=
4 |
5 |
£¨II£©¡ßf(a1)=f(
1 |
2 |
ÇÒf(x)+f(y)=f(
x+y |
1+xy |
¡àf(an+1)=f(
2an | ||
1+
|
¼´
f(an+1) |
f(an) |
¡à{f£¨an£©}ÊÇÒÔ-1ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡àf(an)=-2n-1£®¡£¨6·Ö£©
£¨III£©ÓÉ£¨II£©µÃ£¬bn=-(1+
1 |
2 |
1 |
22 |
1 |
2n-1 |
1-
| ||
1-
|
1 |
2n-1 |
¡àcn=
n |
2 |
n |
2n |
Ôòcn+1-cn=-(n+1)+
n+1 |
2n+1 |
n |
2n |
=
n+1 |
2n+1 |
n |
2n |
=
1-n |
2n+1 |
¡à{cn}ÊǼõÊýÁУ¬
¡àcn¡Üc1=-1+
1 |
2 |
3 |
2 |
Ҫʹ7cn£¼6log2 2m-18log2m¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
Ö»Ðè6log22m-18log2m£¾
21 |
2 |
¼´4log 22m-12log2m-7£¾0£¬
¹Êlog2m£¼-
1 |
2 |
7 |
2 |
¡à0£¼m£¼
| ||
2 |
2 |
¡àµ±m¡Ý12£¬ÇÒm¡ÊN*ʱ£¬7cn£¼6log2 2m-18log2m¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
¡àmµÄ×îСÕýÕûÊýֵΪ12£®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓ뺯ÊýµÄ×ÛºÏÔËÓ㬿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿