题目内容

【题目】设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有 恒成立,则不等式x2f(x)>0的解集为

【答案】(﹣∞,﹣2)∪(0,2)
【解析】解:因为当x>0时,有 恒成立,即[ ]′<0恒成立,所以 在(0,+∞)内单调递减.
因为f(2)=0,
所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.
又因为f(x)是定义在R上的奇函数,
所以在(﹣∞,﹣2)内恒有f(x)>0;在(﹣2,0)内恒有f(x)<0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
所以答案是:(﹣∞,﹣2)∪(0,2).
【考点精析】根据题目的已知条件,利用函数的奇函数的相关知识可以得到问题的答案,需要掌握一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网