题目内容

(3’+5’+8’)设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2pyp≠0)的异于原点的交点

(1)若a=1,b=2,p=2,求点Q的坐标;

(2)若点P(a,b)(ab≠0)在椭圆+y2=1上,p=,

求证:点Q落在双曲线4x2-4y2=1上;

(3)若动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.

(1)

(2)证明见解析。

(3)点的轨迹落在双曲线上。


解析:

(1)当时,

解方程组     得  即点的坐标为    ……3分

(2)证明:由方程组    得  

 即点的坐标为                                    ……5分

时椭圆上的点,即    ,

因此点落在双曲线上                        ……8分

(3)设所在的抛物线方程为                ……10分

代入方程,得,即   ……12分

时,,此时点的轨迹落在抛物线上;

时,  ,此时点的轨迹落在圆上;

时,,此时点的轨迹落在椭圆上;

,此时点的轨迹落在双曲线上; ……16分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网