题目内容

(2014•江门模拟)已知正项等比数列{an}(n∈N*),首项a1=3,前n项和为Sn,且S3+a3、S5+a5、S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{nSn}的前n项和Tn
分析:(1)利用等差数列和等比数列的通项公式、前n项和的意义即可得出;
(2)利用等差数列和等比数列的前n项和公式、“错位相减法”即可得出.
解答:解:(1)设正项等比数列{an}(n∈N*),又a1=3,∴an=3qn-1
∵S3+a3、S5+a5、S4+a4成等差数列,
∴2(S5+a5)=(S3+a3)+(S4+a4),
即2(a1+a2+a3+a4+2a5)=(a1+a2+2a3)+(a1+a2+a3+2a4),
化简得4a5=a3
4a1q4=a1q2,化为4q2=1,
解得q=±
1
2

∵{an}(n∈N*)是单调数列,
q=
1
2
an=
6
2n

(2)由(1)知Sn=6(1-
1
2n
)

Tn=6(1-
1
2
)+6(2-
2
22
)+6(3-
3
23
)+…+6(n-
n
2n
)

Tn=3n(n+1)-6(
1
2
+
2
22
+
3
23
+…+
n
2n
)

Rn=
1
2
+
2
22
+
3
23
+…+
n
2n
,则2Rn=1+
2
2
+
3
22
+…+
n
2n-1

两式相减得Rn=1+
1
2
+
1
22
+
1
23
+…+
1
2n-1
-
n
2n
=2-
n+2
2n

Tn=3n(n+1)-6Rn=3n(n+1)-12+
3(n+2)
2n-1
点评:本题考查了等差数列和等比数列的通项公式及前n项和公式、“错位相减法”等基础知识与基本技能方法,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网