题目内容
【题目】已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆过椭圆的上顶点作圆的两条切线分别与椭圆相交于两点(不同于点),直线的斜率分别为.
(1)求椭圆的方程;
(2)当变化时,①求的值;②试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.
【答案】(1);(2)见解析.
【解析】试题分析:(1)由题设知, , ,又,解得,由此可得求椭圆的方程;(2)①,则有,化简得,对于直线,同理有,于是是方程的两实根,故,即可证明结果;②考虑到时, 是椭圆的下顶点, 趋近于椭圆的上顶点,故若过定点,则猜想定点在轴上.
由,得,于是有,直线的斜率为,直线的方程为,令,得,即可证明直线过定点.
试题解析:(1)由题设知, , ,又,
解得.
故所求椭圆的方程是.
(2)①,则有,化简得,
对于直线,同理有,
于是是方程的两实根,故.
考虑到时, 是椭圆的下顶点, 趋近于椭圆的上顶点,故若过定点,则猜想定点在轴上.
由,得,于是有.
直线的斜率为,
直线的方程为,
令,得,
故直线过定点.
练习册系列答案
相关题目