题目内容
【题目】在平面直角坐标系xoy中,过椭圆 右焦点的直线 交椭圆C于M,N两点,P为M,N的中点,且直线OP的斜率为 .
(Ⅰ)求椭圆C的方程;
(Ⅱ)设另一直线l与椭圆C交于A,B两点,原点O到直线l的距离为 ,求△AOB面积的最大值.
【答案】解:(Ⅰ)由题意,直线 与x轴交点F( ,0),则c= , 设M(x1 , y1)、N(x2 , y2),P(xP , yP),2xP=x1+x2 , 2yP=y1+y2 ,
直线OP的斜率k= ,
则: ,
整理得: + =0,
则 =﹣ =﹣ ,
由直线MN的斜率k= =﹣ ×3=﹣1,整理得:a2=3b2=3(a2﹣c2),
又c= ,解得:a2=3,b2=1,
∴椭圆C的方程为: ;
(Ⅱ)由题意,①当直线l的斜率不存在时,O到直线l的距离为 ,
将x=± 代入椭圆方程,解得:y=± ,则丨AB丨=2丨y丨= ;
当直线斜率为O时,将y=± ,代入椭圆方程,解得:x=± ,
则丨AB丨=2丨x丨= ;
②当直线l的斜率存在时且不为0时,
设直线l的方程为:y=kx+m(k,m∈R且k≠0),
由题意,原点0到直线l的距离为 ,
故 ,则m2= (k2+1).
设A(x1 , y1)、B(x2 , y2),
则: ,(1+3k2)x2+6kmx+3(m2﹣1)=,
由题意△>0,x1+x2=﹣ ,x1x2= .
丨AB丨2=(1+k2)[(x1+x2)﹣4x1x2]=(1+k2)[(﹣ )2﹣4× ],
=(1+k2) ,
= ,
= =3+ ,
=3+ ≤3+ =4,
当且仅当9k2= ,即k=± 时等号成立,丨AB丨max=2,
综上所述,当直线l的斜率k=± 时,
即丨AB丨max=2时,△AOB面积的最大值,
最大值为S= ×丨AB丨max× = ,
△AOB面积的最大值 .
【解析】(Ⅰ)当y=0时,求得焦点F坐标,M,N代入椭圆方程,作差,利用中点坐标公式,化简求得MN的直线方程,即可求得a和b的关系,求得椭圆方程;(Ⅱ)由题意可知:当丨AB丨最大时,△AOB面积的最大值,将直线AB代入椭圆方程,利用韦达定理弦长公式及基本不等式的性质,即可求得丨AB丨的最大值.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.