题目内容

设命题P:不等式(
13
)x+4>m>2x-x2
对一切实数x恒成立;命题q:函数f(x)=-(7-2m)x是R上的减函数.若命题p或q为真命题,命题p且q为假命题,则实数m的取值范围是
 
分析:若p真,则1<m≤4,若q真,则m<3.由题设知p真q假或p假q真.当p真q假时,1<m≤4,且m≥3,由此得3≤m≤4.当p假q真时,m≤1或m>4,且m<3.由此得m≤1.由此能得到实数m的取值范围.
解答:解:若p真,∵2x-x2=-(x-1)2+1≤1,(
1
3
)
x
+4>4

∴1<m≤4,若q真,则7-2m>1,即m<3.
∵命题p或q为真命题,命题p且q为假命题,
∴p真q假或p假q真.
当p真q假时,1<m≤4,且m≥3,∴3≤m≤4.
当p假q真时,m≤1或m>4,且m<3.∴m≤1.
故实数m的取值范围是{m|3≤m≤4或m≤1}.
故答案为:{m|3≤m≤4或m≤1}.
点评:本题考查命题的真假判断,解题时要注意不等式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网