题目内容

已知tan
α
2
=2,求
(1)tan(α+
π
4
)的值
(2)
6sinα+cosα
3sinα-2cosα
的值.
分析:(1)根据正切的二倍角公式,求出tanα的值,再利用正切的两角和公式求出tan(α+
π
4
)的值.
(2)把原式化简成正切的分数式,再把(1)中tanα的值代入即可.
解答:解:(I)∵tan
α
2
=2,
∴tanα=
2tan
α
2
1-tan2
α
2

=
2×2
1-4

=-
4
3

∴tan(α+
π
4
)=
tanα+tan
π
4
1-tanαtan
π
4

=
tanα+1
1-tanα

=
-
4
3
+1
1+
4
3

=-
1
7

(Ⅱ)由( I)∵tanα=-
4
3

6sinα+cosα
3sinα-2cosα

=
6tanα+1
3tanα-2
=
6(-
4
3
)+1
3(-
4
3
)-2

=
7
6
6(-
4
3
)+1
3(-
4
3
)-2
=
7
6
点评:本题主要考查弦切互化的问题.要熟练掌握三角函数中的两角和公式、积化和差和和差化积等公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网