题目内容
已知函数的反函数满足,则的最小值为( )
A.1 B. C. D.
C
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
已知函数的反函数。定义:若对给定的实数,函数与互为反函数,则称满足“和性质”;若函数与互为反函数,则称满足“积性质”。
(1) 判断函数是否满足“1和性质”,并说明理由;
(2) 求所有满足“2和性质”的一次函数;
(3) 设函数对任何,满足“积性质”。求的表达式。
已知函数的反函数为,设的图象上在点处的切线在y轴上的截距为,数列{}满足:
(Ⅰ)求数列{}的通项公式;
(Ⅱ)在数列中,仅最小,求的取值范围;
(Ⅲ)令函数数列满足,求证:对一切n≥2的正整数都有
已知函数的反函数满足,则的最小值为( )
A. B. C. D.
A. B. C. D.