搜索
题目内容
椭圆
的左、右焦点为
,过
作直线
交C于A,B两点,若
是等腰直角三角形,且
,则椭圆C的离心率为( )
A.
B.
C.
D.
试题答案
相关练习册答案
C
试题分析:由题意得,
,∴
,∴
,∴
,
∴
,∴
.
练习册系列答案
学与练期末冲刺夺100分系列答案
名校调研系列卷期末小综合系列答案
黄冈状元成才路应用题系列答案
小学毕业升学全真模拟卷内蒙古人民出版社系列答案
全优假期作业本快乐暑假系列答案
世纪夺冠导航总复习系列答案
海淀黄冈暑假作业合肥工业大学出版社系列答案
快乐暑假快乐学中原农民出版社系列答案
全程解读系列答案
天下无题系列丛书绿色假期暑假作业系列答案
相关题目
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分6分.
已知椭圆
过点
,两焦点为
、
,
是坐标原点,不经过原点的直线
与椭圆交于两不同点
、
.
(1)求椭圆C的方程;
(2) 当
时,求
面积的最大值;
(3) 若直线
、
、
的斜率依次成等比数列,求直线
的斜率
.
已知椭圆C:
+
=1(b>0),直线l:y=mx+1,若对任意的m∈R,直线l与椭圆C恒有公共点,则实数b的取值范围是( )
A.[1,4)
B.[1,+∞)
C.[1,4)∪(4,+∞)
D.(4,+∞)
已知抛物线
的准线与椭圆
相切,且该切点与椭圆的两焦点构成的三角形面积为2,则椭圆的离心率是( )
A.
B.
C.
D.
已知椭圆
:
经过点
,其离心率
.
(1)求椭圆
的方程;
(2)过坐标原点
作不与坐标轴重合的直线
交椭圆
于
两点,过
作
轴的垂线,垂足为
,连接
并延长交椭圆
于点
,试判断随着
的转动,直线
与
的斜率的乘积是否为定值?说明理由.
已知点
是椭圆
上任一点,点
到直线
的距离为
,到点
的距离为
,且
.直线
与椭圆
交于不同两点
、
(
,
都在
轴上方),且
.
(1)求椭圆
的方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
已知椭圆
的中心在原点,焦点在
轴上,离心率为
,它的一个焦点恰好与抛物线
的焦点重合.
求椭圆
的方程;
设椭圆的上顶点为
,过点
作椭圆
的两条动弦
,若直线
斜率之积为
,直线
是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.
已知中心在原点的椭圆的右焦点为
,离心率等于
,则椭圆的方程是( )
A.
B.
C.
D.
在区间
和
上分别取一个数,记为
和
,则方程
,表示焦点在y轴上的椭圆的概率是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总