题目内容

已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数.若f(1)<f(lnx),则x的取值范围是     

(0, )∪(e, +∞)  

解析试题分析:解:①当lnx>0时,因为f(x)在区间[0,+∞)上是单调增函数
所以f(1)<f(lnx)等价于1<lnx,解之得x>e;②当lnx<0时,-lnx>0,结合函数f(x)是定义在R上的偶函数,可得f(1)<f(lnx)等价于f(1)<f(-lnx),再由函数f(x)在区间[0,+∞)上是单调增函数,得到1<-lnx,即lnx<-1,解之得0<x< 
综上所述,得x的取值范围是x>e或0<x<故答案为:(0,)∪(e,+∞).
考点:函数的单调性
点评:本题在已知抽象函数的单调性和奇偶性的前提下,求解关于x的不等式,着重考查了函数的奇偶性与单调性等知识点,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网