题目内容

函数y=ax-2+2(a>0,a≠1)的图象恒过定点A,若定点A在直线ax+by-6=0上,其中a•b>0,则数学公式的最小值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    4
A
分析:定点A的坐标为(2,3),代入直线ax+by-6=0 可得 得 =1,故有 =( )×(),使用基本不等式求得其最小值.
解答:函数y=ax-2+2(a>0,a≠1)的图象恒过定点A的坐标为(2,3),代入直线ax+by-6=0 可得
2a+3b=6,∴=1,则=( )×()=++++2=
当且仅当 a=b时,取等号,
故选 A.
点评:本题考查基本不等式的应用,函数的图象过定点问题,得到 =1,=( )×(),是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网