题目内容

(理)(1)设x、y是不全为零的实数,试比较2x2+y2与x2+xy的大小;
(2)设a,b,c为正数,且a2+b2+c2=1,求证:
1
a2
+
1
b2
+
1
c2
-
2(a3+b3+c3)
abc
≥3.
分析:(1)解法1:利用作差法;解法2:利用分类讨论思想,分xy<0与xy>0讨论即可证得结论;
(2)利用作差法,通过通分、分组、配方等一系列转化,即可证得结论.
解答:证明:(1)证法1:∵x、y是不全为零的实数,
∴2x2+y2-(x2+xy)
=x2+y2-xy
=(x-
1
2
y)
2
+
3
4
y2>0,
∴2x2+y2>x2+xy.
证法2:当xy<0时,x2+xy<2x2+y2
当xy>0时,作差:x2+y2-xy≥2xy-xy=xy>0;
又因为x、y是不全为零的实数,
∴当xy=0时,2x2+y2>x2+xy.
综上,2x2+y2>x2+xy.
(2)证明:∵
1
a2
+
1
b2
+
1
c2
-
2(a3+b3+c3)
abc
-3
=
a2+b2+c2
a2
+
a2+b2+c2
b2
+
a2+b2+c2
c2
-
2(a3+b3+c3)
abc
-3
=a2
1
b2
+
1
c2
)+b2
1
a2
+
1
c2
)+c2
1
a2
+
1
b2
)-2(
a2
bc
+
b2
ac
+
c2
ab

=a2(
1
b
-
1
c
)
2
+b2(
1
c
-
1
a
)
2
+c2(
1
a
-
1
b
)
2
≥0(当且仅当a=b=c时,取得等号),
1
a2
+
1
b2
+
1
c2
-
2(a3+b3+c3)
abc
≥3.
点评:本题考查不等式的证明,着重考查作差法,考查通分、配方、分类讨论等方法,运用转化思想,推理证明,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网