题目内容
已知函数在处取得极小值.
(Ⅰ)若函数的极小值是,求;
(Ⅱ)若函数的极小值不小于,问:是否存在实数k,使得函数在上单调递减.若存在,求出k的范围;若不存在,说明理由.
(Ⅰ),由
知,解得, ……4分
检验可知,满足题意.. ……6分
(Ⅱ)假设存在实数k,使得函数在上单调递减.
设=0两根为,则
由得 的递减区间为
由 解得 的递减区间为
由条件有,解得, ……10分
函数在上单调递减
由
所以,存在实数,满足题意。 ……12分
练习册系列答案
相关题目