题目内容

(2010•宿松县三模)在△ABC中,G是△ABC的重心,且a
GA
+b
GB
+
3
3
c
GC
=
0
,其中a,b,c分别是∠A,∠B,∠C的对边,则∠A=(  )
分析:根据重心性质可知:
GA
+
GB
+
GC
=
0
,由a
GA
+b
GB
+
3
3
c
GC
=
0
,知(a-
3
3
c)
GA
+(b-
3
3
c)
GB
=
0
.因为
GA
GB
不共线,所以,a=b=
3
3
c
,由余弦定理可得:cosA=
b2+c2-a2
2bc
=
3
2
,由此能求出∠A.
解答:解:根据重心性质可知:
GA
+
GB
+
GC
=
0

a
GA
+b
GB
+
3
3
c
GC
=
0

a
GA
+b
GB
+
3
3
c(-
GA
-
GB
)=
0

(a-
3
3
c)
GA
+(b-
3
3
c)
GB
=
0

因为
GA
GB
不共线,
所以,a=b=
3
3
c

由余弦定理可得:cosA=
b2+c2-a2
2bc
=
1
3
c
2
+
c
2
1
3
c
2
3
3
|
c
|•|
c
|
=
3
2

∴A=30°.
故选A.
点评:本题考查重心的性质和应用,是基础题.解题时要认真审题,注意余弦定理的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网