题目内容
已知函数
(
)在
取到极值,
(I)写出函数
的解析式;
(II)若
,求
的值;
(Ⅲ)从区间
上的任取一个
,若
在点
处的切线的斜率为
,求
的概率.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007257803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007257431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007288511.png)
(I)写出函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007304447.png)
(II)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007319687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007335596.png)
(Ⅲ)从区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007350611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007366324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007304447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007397601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007428312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007444424.png)
(I)
;(II)3;(Ⅲ)
;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007460749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007475385.png)
试题分析:(1)由已知可得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007506676.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010075221026.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007538346.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007460749.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007319687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007584509.png)
又由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007460749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007631760.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010076471408.png)
(3)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007304447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007678375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007444424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007709618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007725731.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007740976.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007772762.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007740976.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007803790.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007444424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007475385.png)
点评:?关于sinx、cosx的三角齐次式的命题多次出现在近年的试题中?通过对这类题型的研究?我们不难发现此类题型的一般解题规律:直接或间接地已知tanx的值,要求关于sinx、cosx的某些三角齐次式的值。解决的主要方法是:分子、分母同除以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007850624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001007881430.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目