题目内容

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标





元件A
8
12
40
32]
8
元件B
7
18
40
29
6
(1)试分别估计元件A、元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下;
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.
(1);(2)详见解析.

试题分析:(1)由题设条件能求出元件为正品的概率和元件为正品的概率.
(2)(i)设生产的5件元件中正品件数为,则有次品件,由题意知,由此能求出生产5件元件B所获得的利润不少于300元的概率.
(ii)随机变量的所有取值为,分别求出,由此能求出的分布列和
试题解析:(1)由题可知元件A为正品的概率为,元件B为正品的概率为。  2分
(2)(i)设生产的5件元件中正品件数为,则有次品5件,由题意知得到,设“生产5件元件B所获得的利润不少于300元”为事件,则。                      6分
(ii)随机变量的所有取值为150,90,30,-30,

,所以的分布列为:

150
90
30
-30





              10分
                    12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网