搜索
题目内容
已知
,则函数
的最小值为( )
A.4
B.5
C.2
D.3
试题答案
相关练习册答案
B
试题分析:设
,则
,当
时,
,因为函数
在
上单调递减,所以当
时,函数取得最小值,最小值为5.
的单调性的判断和值域的求解方法,本题的易错点在基本不等式的使用条件和等号能否成立的判断.
练习册系列答案
快乐暑假深圳报业集团出版社系列答案
综合暑假作业本系列答案
尚书郎精彩假期暑假篇系列答案
学易优一本通系列丛书赢在假期暑假系列答案
五州图书超越训练系列答案
探究学案专项期末卷系列答案
暑假生活指导山东教育出版社系列答案
假期生活暑假安徽教育出版社系列答案
新课程暑假作业广西师范大学出版社系列答案
高中暑假作业浙江教育出版社系列答案
相关题目
若函数
为定义域
上的单调函数,且存在区间
(其中
,使得当
时,
的取值范围恰为
,则称函数
是
上的正函数,区间
叫做函数的等域区间.
(1)已知
是
上的正函数,求
的等域区间;
(2)试探求是否存在
,使得函数
是
上的正函数?若存在,请求出实数
的取值范围;若不存在,请说明理由.
已知
是定义在
上的奇函数,且当
时,
,则此函数的值域为
.
函数
的定义域为
.
函数
的定义域为
.
函数
的单调增区间为
.
函数
的定义域是( )
A.
B.
C.
D.
函数
的定义域为( ).
A.
B.
C.
D.
函数
的定义域
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总