ÌâÄ¿ÄÚÈÝ
£¨2006•°ö²º¶þÄ££©ÒÑÖªµÈ²îÊýÁÐ{an}µÄÊ×ÏîΪp£¬¹«²îΪd£¨d£¾0£©£®¶ÔÓÚ²»Í¬µÄ×ÔÈ»Êýn£¬Ö±Ïßx=anÓëxÖáºÍÖ¸Êýº¯Êýf(x)=(
)xµÄͼÏó·Ö±ð½»ÓÚµãAnÓëBn£¨ÈçͼËùʾ£©£¬¼ÇBnµÄ×ø±êΪ£¨an£¬bn£©£¬Ö±½ÇÌÝÐÎA1A2B2B1¡¢A2A3B3B2µÄÃæ»ý·Ö±ðΪs1ºÍs2£¬Ò»°ãµØ¼ÇÖ±½ÇÌÝÐÎAnAn+1Bn+1BnµÄÃæ»ýΪsn£®
£¨1£©ÇóÖ¤ÊýÁÐ{sn}Êǹ«±È¾ø¶ÔֵСÓÚ1µÄµÈ±ÈÊýÁУ»
£¨2£©Éè{an}µÄ¹«²îd=1£¬ÊÇ·ñ´æÔÚÕâÑùµÄÕýÕûÊýn£¬¹¹³ÉÒÔbn£¬bn+1£¬bn+2Ϊ±ß³¤µÄÈý½ÇÐΣ¿²¢Çë˵Ã÷ÀíÓÉ£»
£¨3£©£¨Àí¿Æ×ö£¬ÎĿƲ»×ö£©Éè{an}µÄ¹«²îd=1£¬ÊÇ·ñ´æÔÚÕâÑùµÄʵÊýpʹµÃ£¨1£©ÖÐÎÞÇîµÈ±ÈÊýÁÐ{sn}¸÷ÏîµÄºÍS£¾2010£¿Èç¹û´æÔÚ£¬¸ø³öÒ»¸ö·ûºÏÌõ¼þµÄpÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®£¨²Î¿¼Êý¾Ý£º210=1024£©
1 | 2 |
£¨1£©ÇóÖ¤ÊýÁÐ{sn}Êǹ«±È¾ø¶ÔֵСÓÚ1µÄµÈ±ÈÊýÁУ»
£¨2£©Éè{an}µÄ¹«²îd=1£¬ÊÇ·ñ´æÔÚÕâÑùµÄÕýÕûÊýn£¬¹¹³ÉÒÔbn£¬bn+1£¬bn+2Ϊ±ß³¤µÄÈý½ÇÐΣ¿²¢Çë˵Ã÷ÀíÓÉ£»
£¨3£©£¨Àí¿Æ×ö£¬ÎĿƲ»×ö£©Éè{an}µÄ¹«²îd=1£¬ÊÇ·ñ´æÔÚÕâÑùµÄʵÊýpʹµÃ£¨1£©ÖÐÎÞÇîµÈ±ÈÊýÁÐ{sn}¸÷ÏîµÄºÍS£¾2010£¿Èç¹û´æÔÚ£¬¸ø³öÒ»¸ö·ûºÏÌõ¼þµÄpÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®£¨²Î¿¼Êý¾Ý£º210=1024£©
·ÖÎö£º£¨1£©an=p+£¨n-1£©d£¬Ö±½ÇÌÝÐÎAnAn+1Bn+1BnµÄÁ½µ×³¤¶ÈAnBn=f£¨an£©£¬An+1Bn+1=f£¨an+1£©£®¸ßΪAnAn+1 =d£¬ÀûÓÃÌÝÐÎÃæ»ý¹«Ê½±íʾ³ösn£®ÀûÓõȱÈÊýÁж¨Òå½øÐÐÖ¤Ã÷¼´¿É£®
£¨2£©an=-1+£¨n-1£©=n-2£¬bn=£¨
£©n-2£¬ÒÔbn£¬bn+1£¬bn+2Ϊ±ß³¤Äܹ¹³ÉÒ»¸öÈý½ÇÐΣ¬Ôòbn+2+bn+1£¾bn¿¼²é´Î²»µÈʽ½âµÄÇé¿ö×÷½â´ð£®
£¨4£©ÀûÓÃÎÞÇîµÈ±ÈÊýÁÐÇóºÍ¹«Ê½£¬½«S£¾2010 »¯¼òΪ S=
£¾2010£¬Ì½ÌÖpµÄ´æÔÚÐÔ£®
£¨2£©an=-1+£¨n-1£©=n-2£¬bn=£¨
1 |
2 |
£¨4£©ÀûÓÃÎÞÇîµÈ±ÈÊýÁÐÇóºÍ¹«Ê½£¬½«S£¾2010 »¯¼òΪ S=
3 |
2p+1 |
½â´ð£º½â£º£¨1£©ÓɵȲîÊýÁÐͨÏʽ¿ÉµÃan=p+£¨n-1£©d£¬
bn=(
)an=(
)p+(n-1)d¡£¨2·Ö£©
sn=
[(
)p+(n-1)d+(
)p+nd]=
•(
)p•[(
)(n-1)d+(
)nd]£¬
¶ÔÓÚÈÎÒâ×ÔÈ»Êýn£¬
=
=
=(
)d£¬
ËùÒÔÊýÁÐ{sn}ÊǵȱÈÊýÁÐÇÒ¹«±Èq=(
)d£¬ÒòΪd£¾0£¬ËùÒÔ|q|£¼1£®¡£¨5·Ö£©
£¨Ð´³Ésn=
[(
)a1+nd+(
)a1+(n-1)d]=d•(1+2d)•(
)a1+1•(
)nd£¬µÃ¹«±Èq=(
)dÒ²¿É£©
£¨2£©an=p+£¨n-1£©=n+p-1£¬bn=(
)n+p-1£¬¶Ôÿ¸öÕýÕûÊýn£¬bn£¾bn+1£¾bn+2
ÈôÒÔbn£¬bn+1£¬bn+2Ϊ±ß³¤Äܹ¹³ÉÒ»¸öÈý½ÇÐΣ¬Ôòbn+2+bn+1£¾bn£¬
¼´(
)n+p+1+(
)n+p£¾(
)n+p-1£¬Áîn=-1£¬µÃ1+2£¾4£¬ÕâÊDz»¿ÉÄܵģ®
ËùÒÔ¶Ôÿһ¸öÕýÕûÊýn£¬ÒÔbn£¬bn+1£¬bn+2Ϊ±ß³¤²»Äܹ¹³ÉÈý½ÇÐΣ®¡£¨10·Ö£©
£¨3£©£¨Àí¿Æ×ö£¬ÎĿƲ»×ö£©s1=
£¬q=
ËùÒÔS=
=
Èç¹û´æÔÚpʹµÃS=
£¾2010£¬¼´2p£¼
=
Á½±ßÈ¡¶ÔÊýµÃ£ºp£¼-log21340£¬
Òò´Ë·ûºÏÌõ¼þµÄpÖµ´æÔÚ£¬log21340¡Ö10.4£¬¿ÉÈ¡p=-11µÈ£®¡£¨14·Ö£©
˵Ã÷£ºÍ¨¹ý¾ßÌåµÄpÖµ£¬ÑéÖ¤S=
£¾2010Ò²¿É£®
bn=(
1 |
2 |
1 |
2 |
sn=
d |
2 |
1 |
2 |
1 |
2 |
d |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
¶ÔÓÚÈÎÒâ×ÔÈ»Êýn£¬
sn+1 |
sn |
(
| ||||
(
|
1+(
| ||
2d+1 |
1 |
2 |
ËùÒÔÊýÁÐ{sn}ÊǵȱÈÊýÁÐÇÒ¹«±Èq=(
1 |
2 |
£¨Ð´³Ésn=
d |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
£¨2£©an=p+£¨n-1£©=n+p-1£¬bn=(
1 |
2 |
ÈôÒÔbn£¬bn+1£¬bn+2Ϊ±ß³¤Äܹ¹³ÉÒ»¸öÈý½ÇÐΣ¬Ôòbn+2+bn+1£¾bn£¬
¼´(
1 |
2 |
1 |
2 |
1 |
2 |
ËùÒÔ¶Ôÿһ¸öÕýÕûÊýn£¬ÒÔbn£¬bn+1£¬bn+2Ϊ±ß³¤²»Äܹ¹³ÉÈý½ÇÐΣ®¡£¨10·Ö£©
£¨3£©£¨Àí¿Æ×ö£¬ÎĿƲ»×ö£©s1=
3 |
22+p |
1 |
2 |
s1 |
1-q |
3 |
2p+1 |
Èç¹û´æÔÚpʹµÃS=
3 |
2p+1 |
3 |
4020 |
1 |
1340 |
Á½±ßÈ¡¶ÔÊýµÃ£ºp£¼-log21340£¬
Òò´Ë·ûºÏÌõ¼þµÄpÖµ´æÔÚ£¬log21340¡Ö10.4£¬¿ÉÈ¡p=-11µÈ£®¡£¨14·Ö£©
˵Ã÷£ºÍ¨¹ý¾ßÌåµÄpÖµ£¬ÑéÖ¤S=
3 |
2p+1 |
µãÆÀ£º±¾ÌâÊǺ¯ÊýÓëÊýÁС¢²»µÈʽµÄ½áºÏ£®¿¼²éµÈ±ÈÊýÁеÄÅж¨£¬º¬²ÎÊý²»µÈʽ½âµÄÌÖÂÛ£®¿¼²é·ÖÎö½â¾öÎÊÌ⣬¼ÆË㣬Â߼˼άµÈÄÜÁ¦
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿