题目内容

已知定义在正实数集上的函数f(x)满足①若x>1,则f(x)<0;②f(
12
)
=1;③对定义域内的任意实数x,y,都有:f(xy)=f(x)+f(y),则不等式f(x)+f(5-x)≥-2的解集为
 
分析:用函数的单调性求解,先证明单调性,设x1,x2∈(0,+∞)且x1<x2,则有f(x2)=f(
x2
x1
x1
)=f(
x2
x1
)+f(x1),f(x2)-f(x1))=f(
x2
x1
)<0,得到f(x)是减函数,然后构造单调性模型,由f(
1
2
)
=1求得2=2f(
1
2
)
=f(
1
4
),再令x=y=1,求得f(1)=0,最后用定义求解,要注意所在的区间.
解答:解:∵f(
1
2
)
=1
∴2=2f(
1
2
)
=f(
1
4

令x=y=1
∴f(1)=0
∵f(xy)=f(x)+f(y),
∴不等式f(x)+f(5-x)≥-2可转化为:
f(x(5-x))+f(
1
4
)≥0
∴f(
1
4
x(5-x))≥f(1)
设x1,x2∈(0,+∞)且x1<x2
∴f(x2)=f(
x2
x1
x1
)=f(
x2
x1
)+f(x1
∴f(x2)-f(x1))=f(
x2
x1
)<0
∴f(x)是减函数
x>0
5-x>0
1
4
x(5-x)≤1

解得:0<x≤1或4≤x<5
故答案为:(0,1]∪[4,5)
点评:本题主要考查抽象函数所构造不等式的解法,一般来讲,这类不等式的解法利用函数的单调性定义求解,要注意利用主条件等价转化构造函数单调性模型,将函数值关系转化为自变量关系解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网