题目内容
若Cn1+3Cn2+32Cn3+…+3n-2Cnn-1+3n-1=85,则 n的值为分析:由题意可得 1+Cn1+3Cn2+32Cn3+…+3n-2Cnn-1+3n-1=86,故
=85,解方程求得n的值.
(1+3)n- 1 |
3 |
解答:解:由题意可得 1+Cn1+3Cn2+32Cn3+…+3n-2Cnn-1+3n-1=86,∴
=85,
∴4n=256,∴n=4,
故答案为:4.
(1+3)n- 1 |
3 |
∴4n=256,∴n=4,
故答案为:4.
点评:本题考查组合数公式,二项式定理,得到
=85,是解题的关键.
(1+3)n- 1 |
3 |
练习册系列答案
相关题目