题目内容

若数列的前项和二项展开式中各项系数的和

(Ⅰ)求的通项公式;

(Ⅱ)若数列满足,且,求数列 的通

项及其前项和

(III)求证:


解析:

解:(Ⅰ)由题意,                -----------------------------------------------------2分

,

        两式相减得.                --------------------3分

        当时,,

.            --------------------------------------------------4分

(Ⅱ)∵

,

       ,

  ,

  ………

 

以上各式相加得

.

  ,

.       -----------------------------------------------------------------6分

.     -------------------------------------------------7分

,

.

.

        

         =.

.  -------------------------------------------------------------9分

(3)=

                    =4+

                       

                    =

                    .  -------------------------------------------12分

        ∵,  ∴ 需证明,用数学归纳法证明如下:

        ①当时,成立.

        ②假设时,命题成立即

        那么,当时,成立.

        由①、②可得,对于都有成立.

       ∴

       ∴.---------------------------------------------------------------------------13分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网