题目内容
20.在四棱锥E-ABCD中,底面ABCD为梯形,AB∥CD,AB=2CD,M为AE的中点,设E-ABCD的体积为V,那么三棱锥M-EBC的体积为( )A. | $\frac{1}{5}V$ | B. | $\frac{2}{5}V$ | C. | $\frac{1}{3}V$ | D. | $\frac{2}{3}V$ |
分析 由AB∥CD,AB=2CD得V三棱锥B-ACE=2V三棱锥D-ACE,由M是AE中点得V三棱锥B-ACM=V三棱锥B-MCE,故三棱锥M-EBC的体积为四棱锥体积的$\frac{1}{3}$.
解答 解:∵AB∥CD,AB=2CD,
∴V三棱锥B-ACE=2V三棱锥D-ACE.
∵M为AE的中点,
∴S△MCE=S△ACM,
∴V三棱锥B-ACM=V三棱锥B-MCE,
∵V三棱锥B-ACE=V三棱锥B-ACM+V三棱锥B-MCE,
∴V三棱锥B-ACM=V三棱锥B-MCE=V三棱锥D-ACE,
∵V=V三棱锥B-ACM+V三棱锥B-MCE+V三棱锥D-ACE,
∴V三棱锥M-EBC=V三棱锥B-MCE=$\frac{1}{3}$V.
故选C.
点评 本题考查了几何体的体积,将四棱锥分解成三个体积相等得三棱锥是关键.
练习册系列答案
相关题目
10.已知sin($\frac{π}{4}$-α)=$\frac{\sqrt{2}}{3}$,则sin2α的值为( )
A. | $\frac{7}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{1}{3}$ | D. | -$\frac{5}{9}$ |
12.函数$y={log_2}(5-4x-{x^2})$的递增区间是( )
A. | (-∞,2] | B. | (-5,-2] | C. | [-2,1] | D. | [1,+∞) |