题目内容
设函数=cos(x+π)+cos,0<x<π
(1)求的值域;
(2)设三角形ABC的内角A、B、C的对边分别为a、b、c,若f(B)=1,b=1,c=,求边a的值
见解析
解:(1)f(x)=cosxcosπ-sinxsinπ+cosx+1
=cosx-sinx+1=cos(x+π)+1
由于0<x<π,所以π<x+π<π, -1≤cos(x+π)<
所以的值域为[0,).
(2)因为f(B)=1,所以cos(B+π)+1=1,又0<B<π,所以B=π.
由余弦定理得b²=a²+c²-2accosB,得a²-3a+2=0,
所以a=1或a=2.
练习册系列答案
相关题目