题目内容

(2012•静安区一模)在△ABC中,a、b、c分别为角A、B、C所对的三边长,若(a2+c2-b2)tanB=
3
ac
,则角B的大小为
π
3
3
π
3
3
分析:由余弦定理可得a2+c2-b2=2accosB,代入已知关系式,可得sinB=
3
2
,从而可得答案.
解答:解:∵在△ABC中,a2+c2-b2=2accosB,
∴(a2+c2-b2)tanB=2accosB×tanB=2acsinB,
∵(a2+c2-b2)tanB=
3
ac,
∴2acsinB=
3
ac,
∴sinB=
3
2
.又0<B<π,
∴B=
π
3
3

故答案为:
π
3
3
点评:本题考查余弦定理,考查三角函数间的关系及三角函数的求值,求得sinB=
3
2
是关键,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网