题目内容
(2012•湖北模拟)设Sn为数列{an}的前n项和为Sn=λan-1(λ,为常数,n=1,2,3…).
(1)若a3=
,求λ的值;
(2)是否存在实数λ,使得数列{an}是等差数列?若存在,求出λ的值;若不存在,说明理由;
(3)当λ=2量,若数列{cn}满足bn+1=an+bn(n=1,2,3,…),且b1=
,令cn=
,求数列{an}的前n项和Tn.
(1)若a3=
a | 2 2 |
(2)是否存在实数λ,使得数列{an}是等差数列?若存在,求出λ的值;若不存在,说明理由;
(3)当λ=2量,若数列{cn}满足bn+1=an+bn(n=1,2,3,…),且b1=
2 |
3 |
an |
(an+1)bn |
分析:(1)由Sn=λan-1,知a1=
,a2=
,a3=
,再由a3=a22,能求出λ的值.
(2)假设存在实数λ,使得数列{an}是等差数列,则2a2=a1+a3,故
=
+
,由此能够推导出不存在实数λ,使得数列{an}是等差数列.
(3)当λ=2时,Sn=2an-1,故Sn-1=2an-1-1,n≥2,且a1=1,所以an=2n-1,n∈N*.由bn+1=an+bn(n=1,2,3,…),且b1=
,导出bn=
,n∈N*,所以cn=
=2(
-
),由此利用裂项求和法能求出数列{an}的前n项和Tn.
1 |
λ-1 |
λ |
(λ-1)2 |
λ2 |
(λ-1)3 |
(2)假设存在实数λ,使得数列{an}是等差数列,则2a2=a1+a3,故
2λ |
(λ-1)2 |
1 |
λ-1 |
λ2 |
(λ-1)3 |
(3)当λ=2时,Sn=2an-1,故Sn-1=2an-1-1,n≥2,且a1=1,所以an=2n-1,n∈N*.由bn+1=an+bn(n=1,2,3,…),且b1=
2 |
3 |
2n+1 |
2 |
2n-1 | ||
(2n-1+1)•
|
1 |
2n-1+1 |
1 |
2n+1 |
解答:解:(1)∵Sn=λan-1,
∴a1=λa1-1,
a2+a1=λa2-1,
a3+a2+a1=λa3-1,
由a1=λa1-1,得λ≠1,
∴a1=
,a2=
,a3=
,
∴a3=a22,∴
=
,
∴λ=0,或λ=2.
(2)假设存在实数λ,使得数列{an}是等差数列,
则2a2=a1+a3,
由(1)得
=
+
,
∴
=
,解得1=0,不成立,
∴不存在实数λ,使得数列{an}是等差数列.
(3)当λ=2时,Sn=2an-1,
∴Sn-1=2an-1-1,n≥2,且a1=1,
∴an=2an-2an-1,即an=2an-1,n≥2,
∴an=2n-1,n∈N*.
∵bn+1=an+bn(n=1,2,3,…),且b1=
,
∴bn=an-1+bn-1
=an-1+an-2+bn-2
=…=an-1+an-2+…+a1+b1
=2n-2+2n-3+…+1+
=
,n≥2
当n=1时,上式仍然成立,
∴bn=
,n∈N*,
∵cn=
,
∴cn=
=
.
=2(
-
),
∴Tn=c1+c2+…+cn
=2(
-
+
-
+…+
-
)
=1-
=
.
∴a1=λa1-1,
a2+a1=λa2-1,
a3+a2+a1=λa3-1,
由a1=λa1-1,得λ≠1,
∴a1=
1 |
λ-1 |
λ |
(λ-1)2 |
λ2 |
(λ-1)3 |
∴a3=a22,∴
λ2 |
(λ-1)3 |
λ2 |
(λ-1)4 |
∴λ=0,或λ=2.
(2)假设存在实数λ,使得数列{an}是等差数列,
则2a2=a1+a3,
由(1)得
2λ |
(λ-1)2 |
1 |
λ-1 |
λ2 |
(λ-1)3 |
∴
2λ |
(λ-1)2 |
2λ2-2λ+1 |
(λ-1)3 |
∴不存在实数λ,使得数列{an}是等差数列.
(3)当λ=2时,Sn=2an-1,
∴Sn-1=2an-1-1,n≥2,且a1=1,
∴an=2an-2an-1,即an=2an-1,n≥2,
∴an=2n-1,n∈N*.
∵bn+1=an+bn(n=1,2,3,…),且b1=
2 |
3 |
∴bn=an-1+bn-1
=an-1+an-2+bn-2
=…=an-1+an-2+…+a1+b1
=2n-2+2n-3+…+1+
3 |
2 |
=
2n+1 |
2 |
当n=1时,上式仍然成立,
∴bn=
2n+1 |
2 |
∵cn=
an |
(an+1)bn |
∴cn=
2n-1 | ||
(2n-1+1)•
|
=
2•2n-1 |
(2n-1+1)(2n+1) |
=2(
1 |
2n-1+1 |
1 |
2n+1 |
∴Tn=c1+c2+…+cn
=2(
1 |
2 |
1 |
2+1 |
1 |
2+1 |
1 |
22+1 |
1 |
2n-1+1 |
1 |
2n |
=1-
2 |
2n+1 |
=
2n-1 |
2n+1 |
点评:本题考查满足条件的实数值的求法,考查等差数列的判断,考查数列的前n项和的求法.解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目