题目内容

(2012•湖北模拟)设Sn为数列{an}的前n项和为Sn=λan-1(λ,为常数,n=1,2,3…).
(1)若a3=
a
2
2
,求λ的值;
(2)是否存在实数λ,使得数列{an}是等差数列?若存在,求出λ的值;若不存在,说明理由;
(3)当λ=2量,若数列{cn}满足bn+1=an+bn(n=1,2,3,…),且b1=
2
3
,令cn=
an
(an+1)bn
,求数列{an}的前n项和Tn
分析:(1)由Sn=λan-1,知a1=
1
λ-1
a2=
λ
(λ-1)2
a3=
λ2
(λ-1)3
,再由a3=a22,能求出λ的值.
(2)假设存在实数λ,使得数列{an}是等差数列,则2a2=a1+a3,故
(λ-1)2
=
1
λ-1
+
λ2
(λ-1)3
,由此能够推导出不存在实数λ,使得数列{an}是等差数列.
(3)当λ=2时,Sn=2an-1,故Sn-1=2an-1-1,n≥2,且a1=1,所以an=2n-1,n∈N*.由bn+1=an+bn(n=1,2,3,…),且b1=
2
3
,导出bn=
2n+1
2
,n∈N*,所以cn=
2n-1
(2n-1+1)•
2n+1
2
=2(
1
2n-1+1
-
1
2n+1
),由此利用裂项求和法能求出数列{an}的前n项和Tn
解答:解:(1)∵Sn=λan-1,
∴a1=λa1-1,
a2+a1=λa2-1,
a3+a2+a1=λa3-1,
由a1=λa1-1,得λ≠1,
a1=
1
λ-1
a2=
λ
(λ-1)2
a3=
λ2
(λ-1)3

a3=a22,∴
λ2
(λ-1)3
=
λ2
(λ-1)4

∴λ=0,或λ=2.
(2)假设存在实数λ,使得数列{an}是等差数列,
则2a2=a1+a3
由(1)得
(λ-1)2
=
1
λ-1
+
λ2
(λ-1)3

(λ-1)2
=
2-2λ+1
(λ-1)3
,解得1=0,不成立,
∴不存在实数λ,使得数列{an}是等差数列.
(3)当λ=2时,Sn=2an-1,
∴Sn-1=2an-1-1,n≥2,且a1=1,
∴an=2an-2an-1,即an=2an-1,n≥2,
an=2n-1,n∈N*
∵bn+1=an+bn(n=1,2,3,…),且b1=
2
3

∴bn=an-1+bn-1
=an-1+an-2+bn-2
=…=an-1+an-2+…+a1+b1
=2n-2+2n-3+…+1+
3
2

=
2n+1
2
,n≥2
当n=1时,上式仍然成立,
bn=
2n+1
2
,n∈N*
cn=
an
(an+1)bn

cn=
2n-1
(2n-1+1)•
2n+1
2

=
2•2n-1
(2n-1+1)(2n+1)

=2(
1
2n-1+1
-
1
2n+1
),
∴Tn=c1+c2+…+cn
=2(
1
2
-
1
2+1
+
1
2+1
-
1
22+1
+…+
1
2n-1+1
-
1
2n
)

=1-
2
2n+1

=
2n-1
2n+1
点评:本题考查满足条件的实数值的求法,考查等差数列的判断,考查数列的前n项和的求法.解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网