ÌâÄ¿ÄÚÈÝ
£¨2012•É½¶«£©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬FÊÇÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ½¹µã£¬MÊÇÅ×ÎïÏßCÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÈÎÒâÒ»µã£¬¹ýM£¬F£¬OÈýµãµÄÔ²µÄÔ²ÐÄΪQ£¬µãQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀëΪ
£®
£¨¢ñ£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚµãM£¬Ê¹µÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨¢ó£©ÈôµãMµÄºá×ø±êΪ
£¬Ö±Ïßl£ºy=kx+
ÓëÅ×ÎïÏßCÓÐÁ½¸ö²»Í¬µÄ½»µãA£¬B£¬lÓëÔ²QÓÐÁ½¸ö²»Í¬µÄ½»µãD£¬E£¬Çóµ±
¡Ük¡Ü2ʱ£¬|AB|2+|DE|2µÄ×îСֵ£®
3 |
4 |
£¨¢ñ£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚµãM£¬Ê¹µÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨¢ó£©ÈôµãMµÄºá×ø±êΪ
2 |
1 |
4 |
1 |
2 |
·ÖÎö£º£¨¢ñ£©Í¨¹ýF£¨0£¬
£©£¬Ô²ÐÄQÔÚÏ߶ÎOFƽ·ÖÏßy=
ÉÏ£¬ÍƳöÇó³öp=1£¬ÍƳöÅ×ÎïÏßCµÄ·½³Ì£®
£¨¢ò£©¼ÙÉè´æÔÚµãM£¨x0£¬
£©£¬£¨x0£¾0£©Âú×ãÌõ¼þ£¬Å×ÎïÏßCÔÚµãM´¦µÄÇÐÏßµÄбÂÊΪº¯ÊýµÄµ¼Êý£¬Çó³öQµÄ×ø±ê£¬ÀûÓÃ|QM|=|OQ|£¬Çó³öM£¨
£¬1£©£®Ê¹µÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓëµãM£®
£¨¢ó£©µ±x0=
ʱ£¬Çó³ö¡ÑQµÄ·½³ÌΪ£®ÀûÓÃÖ±ÏßÓëÅ×ÎïÏß·½³ÌÁªÁ¢·½³Ì×飮ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨Àí£¬Çó³ö|AB|2£®Í¬ÀíÇó³ö|DE|2£¬Í¨¹ý|AB|2+|DE|2µÄ±í´ïʽ£¬Í¨¹ý»»Ôª£¬ÀûÓõ¼ÊýÇó³öº¯ÊýµÄ×îСֵ£®
P |
2 |
p |
4 |
£¨¢ò£©¼ÙÉè´æÔÚµãM£¨x0£¬
x02 |
2 |
2 |
£¨¢ó£©µ±x0=
2 |
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖªF£¨0£¬
£©£¬Ô²ÐÄQÔÚÏ߶ÎOFƽ·ÖÏßy=
ÉÏ£¬
ÒòΪÅ×ÎïÏßCµÄ±ê×¼·½³ÌΪy=-
£¬
ËùÒÔ
=
£¬¼´p=1£¬
Òò´ËÅ×ÎïÏßCµÄ·½³Ìx2=2y£®
£¨¢ò£©¼ÙÉè´æÔÚµãM£¨x0£¬
£©£¬£¨x0£¾0£©Âú×ãÌõ¼þ£¬
Å×ÎïÏßCÔÚµãM´¦µÄÇÐÏßµÄбÂÊΪ
y¡ä
=(
) ¡ä
=x0£®
Áîy=
µÃ£¬xQ=
+
£¬
ËùÒÔQ£¨
+
£¬
£©£¬
ÓÖ|QM|=|OQ|£¬
¹Ê( -
+
)2+(
-
) 2=(
+
)2+
£¬
Òò´Ë(
-
) 2=
£®ÓÖx0£¾0£®
ËùÒÔx0=
£¬´ËʱM£¨
£¬1£©£®
¹Ê´æÔÚµãM£¨
£¬1£©£¬Ê¹µÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓëµãM£®
£¨¢ó£©µ±x0=
ʱ£¬ÓÉ£¨¢ò£©µÄQ£¨
£¬
£©£¬¡ÑQµÄ°ë¾¶Îª£ºr=
=
£®
ËùÒÔ¡ÑQµÄ·½³ÌΪ(x-
)2+(y-
)2=
£®
ÓÉ
£¬ÕûÀíµÃ2x2-4kx-1=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÓÚ¡÷=16k2+8£¾0£¬x1+x2=2k£¬x1x2=-
£¬
ËùÒÔ|AB|2=£¨1+k2£©[£¨x1+x2£©2-4x1x2]=£¨1+k2£©£¨4k2+2£©£®
ÓÉ
£¬ÕûÀíµÃ£¨1+k2£©x2-
x-
=0£¬
ÉèD£¬EÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x3£¬y3£©£¬£¨x4£¬y4£©£¬
ÓÉÓÚ¡÷=
+
£¾0£¬x3+x4=
£¬x3x4=-
£®
ËùÒÔ|DE|2=£¨1+k2£©[£¨x3+x4£©2-4x3x4]=
+
£¬
Òò´Ë|AB|2+|DE|2=£¨1+k2£©£¨4k2+2£©+
+
£¬Áî1+k2=t£¬ÓÉÓÚ
¡Üt¡Ü5£¬Ôò
¡Üt¡Ü5£¬
ËùÒÔ|AB|2+|DE|2=t£¨4t-2£©+
+
=4t2-2t+
+
£¬
Éèg£¨t£©=4t2-2t+
+
£¬t¡Ê [
£¬5]£¬ÒòΪg¡ä£¨t£©=8t-2-
£¬
ËùÒÔµ±t¡Ê [
£¬5]£¬g¡ä£¨t£©¡Ýg¡ä£¨
£©=6£¬
¼´º¯Êýg£¨t£©ÔÚt¡Ê [
£¬5]ÊÇÔöº¯Êý£¬ËùÒÔµ±t=
ʱ£¬g£¨t£©È¡×îСֵ
£¬
Òò´Ëµ±k=
ʱ£¬|AB|2+|DE|2µÄ×îСֵΪ
£®
P |
2 |
p |
4 |
ÒòΪÅ×ÎïÏßCµÄ±ê×¼·½³ÌΪy=-
p |
2 |
ËùÒÔ
3p |
4 |
3 |
4 |
Òò´ËÅ×ÎïÏßCµÄ·½³Ìx2=2y£®
£¨¢ò£©¼ÙÉè´æÔÚµãM£¨x0£¬
x02 |
2 |
Å×ÎïÏßCÔÚµãM´¦µÄÇÐÏßµÄбÂÊΪ
y¡ä
| | x=x0 |
x2 |
2 |
| | x=x0 |
Áîy=
1 |
4 |
x0 |
2 |
1 |
4x0 |
ËùÒÔQ£¨
x0 |
2 |
1 |
4x0 |
1 |
4 |
ÓÖ|QM|=|OQ|£¬
¹Ê( -
x0 |
2 |
1 |
4x0 |
1 |
4 |
x02 |
2 |
x0 |
2 |
1 |
4x0 |
1 |
16 |
Òò´Ë(
1 |
4 |
x02 |
2 |
9 |
16 |
ËùÒÔx0=
2 |
2 |
¹Ê´æÔÚµãM£¨
2 |
£¨¢ó£©µ±x0=
2 |
5
| ||
8 |
1 |
4 |
(
|
3
| ||
8 |
ËùÒÔ¡ÑQµÄ·½³ÌΪ(x-
5
| ||
8 |
1 |
4 |
27 |
32 |
ÓÉ
|
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÓÚ¡÷=16k2+8£¾0£¬x1+x2=2k£¬x1x2=-
1 |
2 |
ËùÒÔ|AB|2=£¨1+k2£©[£¨x1+x2£©2-4x1x2]=£¨1+k2£©£¨4k2+2£©£®
ÓÉ
|
5
| ||
4 |
1 |
16 |
ÉèD£¬EÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x3£¬y3£©£¬£¨x4£¬y4£©£¬
ÓÉÓÚ¡÷=
k2 |
4 |
27 |
8 |
5
| ||
4(1+ k 2) |
1 |
16(1+ k 2) |
ËùÒÔ|DE|2=£¨1+k2£©[£¨x3+x4£©2-4x3x4]=
25 |
8(1+ k 2) |
1 |
4 |
Òò´Ë|AB|2+|DE|2=£¨1+k2£©£¨4k2+2£©+
25 |
8(1+ k 2) |
1 |
4 |
1 |
2 |
5 |
4 |
ËùÒÔ|AB|2+|DE|2=t£¨4t-2£©+
25 |
8t |
1 |
4 |
25 |
8t |
1 |
4 |
Éèg£¨t£©=4t2-2t+
25 |
8t |
1 |
4 |
5 |
4 |
25 |
8t2 |
ËùÒÔµ±t¡Ê [
5 |
4 |
5 |
4 |
¼´º¯Êýg£¨t£©ÔÚt¡Ê [
5 |
4 |
5 |
4 |
13 |
2 |
Òò´Ëµ±k=
1 |
2 |
13 |
2 |
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬Å×ÎïÏߵıê×¼·½³Ì£¬Å×ÎïÏߵļòµ¥ÐÔÖÊ£¬Éè¶ø²»ÇóµÄ½âÌâ·½·¨£¬ÏÒ³¤¹«Ê½µÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬×ª»¯Ë¼ÏëµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿