题目内容
已知F1、F2为双曲线的两个焦点,P为双曲线右支上异于顶点的任意一点,O为坐标原点,下列四个命题:①△PF1F2的内切圆的圆心必在直线x=3上;
②△PF1F2的内切圆的圆心必在直线x=2上;
③△PF1F2的内切圆的圆心必在直线OP上;
④△PF1F2的内切圆必过(3,0).
其中真命题的序号是 .
【答案】分析:设△PF1F2的内切圆分别与PF1、PF2切于点A、B,与F1F2切于点M,则可知|PA|=|PB|,|F1A|=|F1M|,|F2B|=|F2M|,点P在双曲线右支上,根据双曲线的定义可得|PF1|-|PF2|=2a,因此|F1M|-|F2M|=2a,设M点坐标为(x,0),代入即可求得x,判断①④正确.
解答:解:设△PF1F2的内切圆分别与PF1、PF2切于点A、B,与F1F2切于点M,则可知|PA|=|PB|,|F1A|=|F1M|,|F2B|=|F2M|,点P在双曲线右支上,所以|PF1|-|PF2|=2a=6,故|F1M|-|F2M|=6,而|F1M|+|F2M|=2,
设M点坐标为(x,0),
则由|PF1|-|PF2|=2a=6,可得(x+)-(-x)=6,解得x=3,显然内切圆的圆心与点M的连线垂直于x轴,
故答案为①④.
点评:本题主要考查了双曲线的简单性质.特别是灵活利用了双曲线的定义.
解答:解:设△PF1F2的内切圆分别与PF1、PF2切于点A、B,与F1F2切于点M,则可知|PA|=|PB|,|F1A|=|F1M|,|F2B|=|F2M|,点P在双曲线右支上,所以|PF1|-|PF2|=2a=6,故|F1M|-|F2M|=6,而|F1M|+|F2M|=2,
设M点坐标为(x,0),
则由|PF1|-|PF2|=2a=6,可得(x+)-(-x)=6,解得x=3,显然内切圆的圆心与点M的连线垂直于x轴,
故答案为①④.
点评:本题主要考查了双曲线的简单性质.特别是灵活利用了双曲线的定义.
练习册系列答案
相关题目
已知F1,F2分别为双曲
-
=1(a>0,b>0)的左、右焦点,P为双曲线左支上任一点,若
的最小值为8a,则双曲线的离心率e的取值范围是( )
x2 |
a2 |
y2 |
b2 |
|PF2|2 |
|PF1| |
A、(1,+∞) |
B、(0,3] |
C、(1,3] |
D、(0,2] |